Skip to main content

Advertisement

Log in

Depression of extra-cellular GABA and increase of NMDA-induced nitric oxide following acute intra-nuclear administration of alcohol in the cerebellar nuclei of the rat

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Gamma-aminobutyric acid (GABA) and nitric oxide are two key-transmitters in cerebellar nuclei, the major output of cerebellar circuitry. The aims of this study were to investigate the effects of acute intra-cerebellar administration of ethanol (20 mM) on extra-cellular levels of GABA and on the NMDA-induced nitric oxide (NO) production using microdialysis in the rat. We also studied: (i) the effects of a pre-administration of DNQX, a specific antagonist of AMPA receptors, on NO production, (ii) the effects of a pre-administration of 7-NI (7-nitroindazole, an inhibitor of neuronal nitric oxide synthase NOS) and APV (D-2-amino-5-phosphonovaleric acid, a specific blocker of the NMDA type glutamate receptors) on the actions of alcohol/NMDA on glutamate receptors, and (iii) thein vivo interaction between DNQX, ethanol and NMDA receptor activation. We found that ethanol decreased the amount of extra-cellular GABA, and that this effect was counterbalanced by administration of tiagabine 1 mg/kg, a potent inhibitor of GAT-1 GABA transporter, given by the i.p. route. In loco administration of NMDA increased the levels of NO, as previously reported. A pre-administration of DNQX (500 microM) increased significantly the production of NO up to toxic levels, as well as ethanol administration. A preadministration of 7-NI or APV reduced significantly the amounts of NO when NMDA and alcohol were infused simultaneously. The combination of ethanol with DNQX was associated with a marked enhancement of the concentrations of NO. The activity of GAT-1 in cerebellar nuclei and around this target, including in glial cells expressing GAT-1 activated by ambient GABA, seems to be spared by ethanol. Tiagabine could be considered as a candidate for future investigational treatments of acute ethanol-induced dysfunction of cerebellar nuclei. We found a potentiation of the production of NO when AMPA antagonists are given simultaneously to ethanol. The hypothesis of AMPA neurotoxicity, which has convincing arguments during chronic exposure, is challenged in this model of acute cerebellar nuclear toxicity of alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pentney R. Alcohol toxicity in the cerebellum: Fundamental aspects. In: Manto M, Pandolfo M, editors. The cerebellum and its disorders. Cambridge: Cambridge University Press; 2002.

    Google Scholar 

  2. Bhave SV, Ghoda L, Hoffman PL. Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: Signal transduction cascades and site of ethanol action. J Neurosci. 1999;19:3277–86.

    PubMed  CAS  Google Scholar 

  3. Bloom FE, Siggins GR. Electrophysiological action of ethanol at the cellular level. Alcohol. 1987;4:331–7.

    Article  PubMed  CAS  Google Scholar 

  4. Iorio KR, Reinlib L, Tabakoff B, Hoffman PL. Chronic exposure of cerebellar granule cells to ethanol results in increased N-methyl-D-aspartate receptor function. Mol Pharmacol. 1992;41:1142–8.

    PubMed  CAS  Google Scholar 

  5. Hauser KF, Khurdayan VK, Goody RJ, Nath A, Saria A, Pauly JR. Selective vulnerability of cerebellar granule neuroblasts and their progeny to drugs with abuse liability. Cerebellum. 2003;2:184–95.

    Article  PubMed  CAS  Google Scholar 

  6. Lovinger DM. Excitotoxicity and alcohol-related brain damage. Alcohol Clin Exp Res. 1993;17:19–27.

    Article  PubMed  CAS  Google Scholar 

  7. Strahlendorf JC, Acosta S, Miles R, Strahlendorf HK. Choline blocks AMPA-induced dark cell degeneration of Purkinje neurons: potential role of the 7 nicotinic receptor. Brain Res. 2001;901:71–8.

    Article  PubMed  CAS  Google Scholar 

  8. Garthwaite G, Garthwaite J. Mechanisms of AMPA neurotoxicity in rat brain slices. Eur J Neurosci. 1991;3:729–36.

    Article  PubMed  Google Scholar 

  9. Ericson M, Haythornthwaite AR, Yeh PW, Yeh HH. Brainderived neurotrophic factor mitigates chronic ethanolinduced attenuation of gamma-aminobutyric acid responses in cultured cerebellar granule cells. J Neurosci Res. 2003;73:722–30.

    Article  PubMed  CAS  Google Scholar 

  10. Nestoros JN. Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science. 1980;209:708–10.

    Article  PubMed  CAS  Google Scholar 

  11. Reynolds JN, Prasad A, MacDonald JF. Ethanol modulation of GABA receptor-activated Cl-currents in neurons of the chick, rat and mouse central nervous system. Eur J Pharmacol. 1992;224:173–81.

    Article  PubMed  CAS  Google Scholar 

  12. Palmer MR, Hoffer BJ. GABAergic mechanisms in the electrophysiological actions of ethanol on cerebellar neurons. Neurochem Res. 1990;15:145–51.

    Article  PubMed  CAS  Google Scholar 

  13. Chen L, Yung WH. Effects of the GABA-uptake inhibitor tiagabine in rat globus pallidus. Exp Brain Res. 2003;152: 263–9.

    Article  PubMed  CAS  Google Scholar 

  14. Dalby NO. GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology. 2000;39:2399–2407.

    Article  PubMed  CAS  Google Scholar 

  15. Barakat L, Bordey A. GAT-1 and reversible GABA transport in Bergmann glia in slices. J Neurophysiol. 2002;88:1407–19.

    PubMed  CAS  Google Scholar 

  16. Smolders I, Sarre S, Michotte Y, Ebinger G. The analysis of excitatory, inhibitory and other amino acids in rat brain microdialysates using microbore liquid chromatography. J Neurosci Meth. 1995;57:47–53.

    Article  CAS  Google Scholar 

  17. Castro-Alamancos MA, Torres-Aleman I. Long-term depression of glutamate-induced gamma-aminobutyric acid release in cerebellum by insulin-like growth factor I. Proc Natl Acad Sci USA. 1993;90:7386–90.

    Article  PubMed  CAS  Google Scholar 

  18. Stengard K, Tham R, O’Connor WT, Hoglund G, Ungerstedt U. Acute toluene exposure increases extracellular GABA in the cerebellum of rat: a microdialysis study. Pharmacol Toxicol. 1993;73:315–18.

    Article  PubMed  CAS  Google Scholar 

  19. Bert A, Favale D, Jego G, et al. Rapid and precise method to locate microdialysis probe implantation in the rodent brain. J Neurosci Meth. 2004;140:53–7.

    Article  CAS  Google Scholar 

  20. Rosina A, Morara S, Provini L. GAT-1 developmental expression in the rat cerebellar cortex: Basket and pinceau formation. Neuroreport. 1999;10:1613–18.

    PubMed  CAS  Google Scholar 

  21. Morara S, Brecha NC, Marcotti W, Provini L, Rosina A. Neuronal and glial localization of the GABA transporter GAT-1 in the cerebellar cortex. Neuroreport. 1996;7:2993–6.

    Article  PubMed  CAS  Google Scholar 

  22. Ribak CE, Tong WM, Brecha NC. Astrocytic processes compensate for the apparent lack of GABA transporters in the axon terminals of cerebellar Purkinje cells. Anat Embryol (Berl). 1996;194:379–90.

    CAS  Google Scholar 

  23. Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL. Localization of messenger RNAs encoding three GABA transporters in rat brain: An in situ hybridization study. Brain Res Mol Brain Res. 1995;33:7–21.

    Article  PubMed  CAS  Google Scholar 

  24. Limatola C. Neurotrophic effects of AMPA. Cerebellum. 2004;3:2–10.

    Article  PubMed  CAS  Google Scholar 

  25. Tanii Y, Nishikawa T, Hashimoto A, Takahashi K. Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol Exp Therap. 1994;269:1040–8.

    CAS  Google Scholar 

  26. Saigoh K, Matsui K, Takahashi K, Nishikawa T, Wada K. The stereo-specific effect of D-serine ethylester and the Dcycloserine in ataxic mutant mice. Brain Res. 1998;808:42–7.

    Article  PubMed  CAS  Google Scholar 

  27. Ogawa M, Shigeto H, Yamamoto T, Oya Y, Wada K, Nishikawa T, Kawai M. D-cycloserine for the treatment of ataxia in spinocerebellar degeneration. J Neurol Sci. 2003;210:53–6.

    Article  PubMed  CAS  Google Scholar 

  28. Navamani M, Morgan M, Williams RJ. Ethanol modulates N-methyl-D-aspartate-evoked arachidonic acid release from neurones. Eur J Pharmacol. 1997;340:27–34.

    Article  PubMed  CAS  Google Scholar 

  29. Miller B, Sarantis M, Traynelis SF, Attwell D. Potentiation of NMDA receptor currents by arachidonic acid. Nature. 1992;355:722–5.

    Article  PubMed  CAS  Google Scholar 

  30. Williams RJ, Murphy N, Glowinski J, Pr’emont J. Glucose regulates glutamate-evoked arachidonic acid release from cultured striatal neurones. J Neurochem. 1995;65:241–9.

    Article  PubMed  CAS  Google Scholar 

  31. Linden DJ. Phospholipase A2 controls the induction of shortterm versus long-term depression in the cerebellar purkinje neuron in culture. Neuron. 1995;15:1393–401.

    Article  PubMed  CAS  Google Scholar 

  32. Chan PH, Kerlan R, Fishman RA. Reductions of gammaaminobutyric acid and glutamate uptake and NaK-ATPase activity in brain slices and synaptosomes by arachidonic acid. J Neurochem. 1983;40:309–16.

    Article  PubMed  CAS  Google Scholar 

  33. Volterra A, Trotti D, Cassutti P, Tromba C, Salvaggio A, Melcangi RC, Racagni G. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem. 1992;59:600–6.

    Article  PubMed  CAS  Google Scholar 

  34. Grant KA, Vaverius P, Hudspith M, Tabakoff B. Ethanol withdrawal seizures and the NMDA receptor complex. Eur J Pharmacol. 1990;176:289–96.

    Article  PubMed  CAS  Google Scholar 

  35. Hu XJ, Ticku MK. Chronic ethanol treatment upregulates the NMDA receptor function and binding in mammalian cortical neurons. Mol Brain Res. 1995;30:347–56.

    Article  PubMed  CAS  Google Scholar 

  36. Fataccioli V, Gentil M, Nordmann R, Rouach H. Inactivation of cerebellar nitric oxide synthase by ethanol in vitro. Alcohol Alcohol. 1997;32:683–91.

    PubMed  CAS  Google Scholar 

  37. Baud O, Li J, Zhang Y, Neve RL, Volpe JJ, Rosenberg PA. Nitric oxide-induced cell death in developing oligodendrocytes is associated with mitochondrial dysfunction and apoptosis-inducing factor translocation. Eur J Neurosci. 2004;20:1713–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manto, M., Laute, MA. & Pandolfo, M. Depression of extra-cellular GABA and increase of NMDA-induced nitric oxide following acute intra-nuclear administration of alcohol in the cerebellar nuclei of the rat. Cerebellum 4, 230–238 (2005). https://doi.org/10.1080/14734220500243835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220500243835

Key words

Navigation