Skip to main content
Log in

Temperature determines the occurrence of CAM or C3 photosynthesis in pineapple plantlets grown in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Ananas comosus (L.) Merr. var. Smooth Cayenne plants when grown in vitro under different temperature regimes developed as CAM or as C3 plants. The plants used in this study were developed from the lateral buds of the nodal etiolated stem explants cultured on Murashige and Skoog medium for 3 mo. The cultures were maintained under a 16-h photoperiod for different thermoperiods. With 28°C light/15°C dark thermoperiod, as compared with constant 28°C light and dark, pineapple plants had a succulence index two times greater, and also a greater nocturnal titratable acidity and phosphoenolpyruvate carboxylase (PEPCase) activity, indicating CAM-type photosynthesis. The highest abscisic acid (ABA) level occurred during the light period, 8 h prior to maximum PEPCase activity, while the indole-3-acetic acid (IAA) peak was found during the dark period, coinciding with the time of highest PEPCase activity. These plants were also smaller with thicker leaves and fewer roots, but had greater dry weight. Their leaves showed histological characteristics of CAM plants, such as the presence of greater quantities of chlorenchyma and hypoderm. In addition, their vascular system was more conspicuous. In contrast, under constant temperature (28°C light/dark) plants showed little succulence in the leaves. There was no significant acid oscillation and diurnal variation in PEPCase activity in these plants, suggesting the occurrence of C3 photosynthesis. Also, no diurnal variation in ABA and IAA contents was observed. The results of this study clearly indicate a role for temperature in determining the type of carbon fixation pathway in in vitro grown pineapple. Evidence that ABA and IAA participate in CAM signaling is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnon, D. I. Copper enzyme in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:411–416; 1949.

    Google Scholar 

  • Bartholomew, D. P.; Kadzimin, S. B. Pineapple. In: Alvin, P.T.; Kozeowski, T. T. eds. Ecophysiology of tropical crops. New York, NY: Academic Press; 1977:113–156.

    Google Scholar 

  • Bartholomew, D. P.; Malézieux, E. P. Pineapple. In: Schaffer, B.; Andersen, P. C. eds. Handbook of environmental physiology of fruit crops, Vol. 2. Boca Raton: CRC Press; 1994:243–291.

    Google Scholar 

  • Beltrán-Peña, E.; Aguilar, R.; Ortiz-López, A.; Dinkova, T. D.; Sánchez-de-Jiménez, E. Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation. Physiol. Plant. 115:291–297; 2002.

    Article  PubMed  Google Scholar 

  • Borland, A. M.; Griffiths, H. The regulation of citric acid accumulation and carbon recycling during CAM in Ananas comosus. J. Exp. Bot. 40:53–60; 1989.

    Article  CAS  Google Scholar 

  • Borland, A. M.; Hartwell, J.; Jenkins, G. I.; Wilkins, M. B.; Nimmo, H. G. Metabolic control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism. Plant Physiol. 121:889–896; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  • Chardot, T. P.; Wedding, R. T. Regulation of Crassula argentea phosphoenolpyruvate carboxylase in relation to temperature. Arch. Biochem. Biophys. 293:292–297; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Chollet, R.; Vidal, J.; O'Leary, M. H. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:273–298; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Chu, C.; Dai, Z.; Ku, M. S. B.; Edwards, G. Induction of crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. Plant Physiol. 93:1253–1260; 1990.

    PubMed  CAS  Google Scholar 

  • Cohen, J.D. Convenient apparatus for the generation of small amounts of diazomethane. J. Chromatogr. 303:193–196; 1984.

    Article  CAS  Google Scholar 

  • Endres, L.; Souza, B. M.; Mercier, H. In vitro nitrogen nutrition and pattern in bromeliads. In Vitro Cell. Dev. Biol. Plant 38:481–486; 2002.

    CAS  Google Scholar 

  • Fahn, A.; Cutler, D. F. Xerophytes. Berlin: Gebrüder Borntraeger; 1992.

    Google Scholar 

  • Friemert, V.; Heininger, D.; Kluge, M.; Ziegler, H. Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in crassulacean acid metabolism plants. Planta 174:453–461; 1988.

    Article  CAS  Google Scholar 

  • Haag-Kerwer, A.; Franco, A. C.; Lüttge, U. The effect of temperature and light on gas exchange and acid accumulation in the C3-CAM plant Clusia minor L. J. Exp. Bot. 43:345–352; 1992.

    Article  CAS  Google Scholar 

  • Hendry, G. A.; Price, A. H. Stress indicators: chlorophylls and carotenoids. In: Hendry, G. A. F.; Grime, J. P., eds. Methods in comparative plant ecology. London: Chapman and Hall; 1993:150–152.

    Google Scholar 

  • Karnovsky, M. J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J. Cell Biol. 27:137–138; 1965.

    Google Scholar 

  • Kluge, M.; Ting, I. P. Crassulacean acid metabolism: analysis of an ecological adaptation. Berlin: Springer-Verlag; 1978.

    Google Scholar 

  • Leport, L.; Kandbinder, A.; Baur, B.; Kaiser, W. M. Diurnal modulation of phosphoenolpyruvate carboxylation in pea leaves and roots as related to tissue malate concentrations and to the nitrogen source. Planta 198:495–501; 1996.

    Article  CAS  Google Scholar 

  • Lüttge, L. Ecophysiology of crassulacean acid metabolism (CAM). Ann. Bot. 93:629–652; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Maldiney, R.; Leroux, B.; Sabbagh, I.; Sotta, B.; Sossountzov, L.; Miginiac, E. A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid and zeatin-riboside. J. Immunol. Meth. 90:151–158; 1986.

    Article  CAS  Google Scholar 

  • Martin, C. E. Physiological ecology of the Bromeliaceae. Bot. Rev. 60:1–81; 1994.

    Google Scholar 

  • Medina, E.; Lüttge, U.; Leal, F.; Ziegler, H. Carbon and hydrogen isotope ratios in bromeliads growing under different light environments in natural conditions. Bot. Acta 104:47–52; 1991.

    CAS  Google Scholar 

  • Medina, E.; Ziegler, H.; Lüttge, U.; Trimborn, P.; Francisco, M. Light conditions during growth as revealed by 13C values of leaves of primitive cultivars of Ananas comosus, an obligate CAM species. Funct. Ecol. 8:298–305; 1994.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Neales, T. F.; Sale, P. J. M.; Meyer, C. P. Carbon dioxide assimilation by pineapple plants, Ananas comosus (L.) Merr. II. Effects of variation of the day/night temperature regime. Aust. J. Plant Physiol. 7:375–385, 1980.

    Article  Google Scholar 

  • Nioevola, C. C.; Mercier, H.; Majerowicz, N. Levels of nitrogen assimilation in bromeliads with different growth habits. J. Plant Nutr. 24:1387–1398; 2001.

    Article  Google Scholar 

  • Nimmo, H. G. The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends Plant Sci. 5:75–80; 2000.

    Article  PubMed  CAS  Google Scholar 

  • O'Brien, T. P.; Feder, N.; McCully, M. E. Polychromatic staining of plant cell walls by toluidine blue O. Proplasma 59:368–373; 1965.

    Article  Google Scholar 

  • Osmond, B.; Maxwell, K.; Popp, M.; Robinson, S. On being thick: fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants. In: Bryant, J. A.; Burrell, M. N.; Kruger, N., eds. Plant carbohydrate biochemistry. Oxford: BIOS Scientific Publishers; 1999:183–200.

    Google Scholar 

  • Ota, K.; Yamamoto, Y. Effects of different nitrogen sources and concentration on CAM photosynthesis in Kalanchöe blossfeldiana. J. Exp. Bot. 30:971–981; 1991.

    Google Scholar 

  • Pérez, L.; Aguilar, R.; Sánchez-de-Jiménez, E. Effects of an exogenous auxin on maize tissues. Alteration of protein synthesis and phosphorylation. Physiol. Plant. 69:517–522; 1987.

    Google Scholar 

  • Sayed, O. H. Crassulacean acid metabolism 1975–2000, a check list. Photosynthetica 39:339–352; 2001.

    Article  CAS  Google Scholar 

  • Sipes, D.; Ting, I. P. Crassulacean acid metabolism and modifications in Peperomia camptotricha. Plant Physiol. 77:59–63; 1985.

    PubMed  CAS  Google Scholar 

  • Taybi, T.; Cushman, J. C. Signaling events leading to crassulacean acid metabolism induction in the common ice plant. Plant Physiol. 121:545–555; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Taybi, T.; Cushman, J. C.; Borland, A. M. Environmental, hormonal and circadian regulation of crassulacean acid metabolism expression. Funct. Plant Biol. 29:669–678; 2002.

    Article  CAS  Google Scholar 

  • Taybi, T.; Sotta, B.; Gehrig, H.; Güşlü, S.; Kluge, M.; Brulfert, J. Differential effects of abscisic acid on phosphoenolpyruvate carboxylase and CAM operation in Kalanchoë blossfeldiana. Bot. Acta 108:240–246; 1995.

    CAS  Google Scholar 

  • Teeri, J. A.; Tonsor, S. J.; Turner, M. Leaf thickness and carbon isotope composition in Crassulaceae. Oecologia 50:369–397; 1981.

    Article  Google Scholar 

  • Thomas, J.; McElwain, E. F.; Bohnert, H. J. Convergent induction of osmotic stress-responses: abscisic acid, cytokinin, and the effect of NaCl. Plant Physiol. 100:416–423; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Ting, I. P. Effects of ABA on CAM in Portulacaria afra. Photosynth. Res. 2:39–48; 1981.

    Article  CAS  Google Scholar 

  • Tomlinson, P. B. Commelinales—Zingiberales. In: Metcalfe, C. R., ed. Anatomy of the monocytoledons, vol. 3. London: Oxford University Press; 1969:193–294.

    Google Scholar 

  • Zhu, J.; Bartholomew, D. J.; Goldstein, G. Effect of elevated carbon dioxide on the growth and physiological responses of pineapple, a species with crassulacean acid metabolism. J. Am. Soc. Hort. Sci. 122:233–237; 1997.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mercier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nievola, C.C., Kraus, J.E., Freschi, L. et al. Temperature determines the occurrence of CAM or C3 photosynthesis in pineapple plantlets grown in vitro . In Vitro Cell.Dev.Biol.-Plant 41, 832–837 (2005). https://doi.org/10.1079/IVP2005694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2005694

Key words

Navigation