Skip to main content
Log in

Photoperiodically independent flowering of Pharbitis nil plants regenerated from flower buds

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Flower buds and anthers of the short-day plant Pharbitis nil were treated either with thermic shock (7 or 35°C) or osmotic/trophic shock (12% sucrose) for 24 h. Explants were transferred either to Murashige and Skoog medium (MS) with addition of 6-benzylaminopurine (BA; 4.4μM) and 6% sucrose or to the same growth medium containing 22 μM BA and 3% sucrose. Both media were supplemented with α-naphthaleneacetic acid (NAA; 0.55 μM). Osmotic/trophic shock stimulated the occurrence of shoots on flower buds grown on medium containing 22 μM BA. Thermic shock (7 and 35°C) inhibited this process on both types of explants. Regenerated plantlets were transferred to MS medium supplemented with 6% sucrose, gibberellic acid (GA3; 1.44μM), NAA (0.55 μM) and Ca2+ (0.66 mgl−1). After 3–4 wk they were able to produce flowers without photoperiodic induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida, M. D.; Kerbauy, G. B. Micropropagation of Bactris gasipaes (Palmae) through flower bud culture. Revista Brasileira Fisiol. Veg. 8:215–217; 1996.

    Google Scholar 

  • Feng, G. H.; Ouyang, J. The effects of KNO3 concentration in callus induction medium for wheat anther culture. Plant Cell Tiss. Organ. Cult. 12:3–12; 1987.

    Article  CAS  Google Scholar 

  • Flachsland, E.; Mrogiński, L.; Davina, J. Regeneration of plants from anthers of Stevia rebaudiana Bretoni (Compositae) cultivated in vitro. Biocell 20:87–90; 1996.

    CAS  Google Scholar 

  • Fraser, L. G.; Harvey, C. F. Somatic embryogenesis from anther-derived callus in two Actinidia species. Sci. Hort. 29:335–346; 1986.

    Article  Google Scholar 

  • Jain, R. K.; Jain, S.; Wu, R. Stimulatory effect of water stress on plant regeneration in aromatic Indica rice varietes. Plant Cell Rep. 15:712–717; 1996.

    Article  CAS  Google Scholar 

  • Jeannin, G.; Bronner, R.; Hahne, G. Somatic embryogenesis and organogenesis induced on the immature zygotic embryo of sunflower (Helianthus annuus L.) cultivated in vitro: role of the sugar. Plant Cell Rep. 15:200–204; 1995.

    Article  CAS  Google Scholar 

  • Jia, S. R.; Chua, N. H. Somatic embryogenesis and plant regeneration from immature embryo culture of Pharbitis nil. Plant Sci. 87:215–223; 1992.

    Article  CAS  Google Scholar 

  • Johannson, L. B. Improved methods for induction of embryogenesis of anthers Solanum tuberosum. Potato Res. 29:179–190; 1986.

    Article  Google Scholar 

  • Johannson, L. B. Increased induction of embryogenesis and regeneration in anther cultures of Solanum tuberosum L. Potato Res. 31:145–149; 1988.

    Article  Google Scholar 

  • Laparra, H.; Bronner, R.; Hahne, G. Histological analysis of somatic embryogenesis induced in leaf explants of Helianthus smithii Heiser. Protoplasma 196:1–11; 1997.

    Article  Google Scholar 

  • Li, J., O'Neill, S. D. Somatic embryogenesis and regeneration in Pharbitis nil. Plant Physiol. 102:97(abstract 543): 1993.

    Google Scholar 

  • Marcińska, I.; Dubert, F.; Biesaga-Kościelniak, J. Transfer of the ability to flower in winter wheat via callus tissue regenerated from immature inflorescences. Plant Cell Tiss. Organ Cult. 41:285–288; 1995.

    Article  Google Scholar 

  • Masuda, H.; Oohashi, S. Direct embryo formation from epidermal cells of carrot hypocotyls. J. Plant Physiol. 145:531–534; 1995.

    CAS  Google Scholar 

  • Miller, R. M.; Kaul, V.; Hutchinson, J. F.; Maheswaran, G.; Richards, D. Shoot regeneration from fragmented flower buds of carnation Dianthus caryophyllus. Ann. Bot. 68:563–568; 1991.

    Google Scholar 

  • Miyoshi, K. Callus induction and plantlet formation through culture of isolated microspores of eggplant (Solanum melongena L.) Plant Cell Rep. 15:391–395; 1996.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Patton, D. A.; Meinke, D. W. High-frequency plant regeneration from cultured cotyledons of Arabidopsis thaliana. Plant Cell Rep. 7:233–237; 1988.

    Article  CAS  Google Scholar 

  • Radke, S.; Turner, I. Transformation and regeneration of Brassica rapa using Agrobacterium tumefaciens. Plant Cell Rep. 11:499–505; 1992.

    Article  Google Scholar 

  • Rost, T. L.; Peterson, K. The developmental anatomy of adventive plantlets from leaves and leaf segments of Crassula argentea (Crassulaceae). Bot. Gaz. 137:203–210; 1976.

    Article  Google Scholar 

  • Rout, J. R., Sarma, N. P. High frequency plantlet regeneration in rice anther callus cultures. http://probe.nalusda.gov:8000/otherdoes/rgn/rgn3/v31X47.html; 1995.

  • Sangwan, R. S. Androgenic stimulating factors in the anther and isolated pollen grain culture of Datura innoxia Mill. J. Exp. Bot. 28:843–852; 1977.

    Article  Google Scholar 

  • Sangwan, R. S.; Norreel, B. Pollen embryogenesis in Pharbitis nil L. Naturwissenschaften 62:440; 1975.

    Article  Google Scholar 

  • Shimasaki, K.; Uemoto, S. Rhizome induction and plantlet regeneration of Cymbidium goeringii from flower bud cultures in vitro. Plant Cell Tiss. Organ Cult. 25:49–52; 1991.

    Article  CAS  Google Scholar 

  • Suh, S. K.; Park, H. G. Effects of temperature pretreatment, growth regulators' and antibiotic treatments on anther cultures of various cultivars of garlie (Allium sativum L.). J. Korean Soc. Hort. Sci. 35:337–344; 1994.

    CAS  Google Scholar 

  • Torres, K. C. Tissue culture techniques for horticultural crops. New York: Van Nostrand Reinhold; 1989.

    Google Scholar 

  • Trejgell, A.; Tretyn, A. Regeneration of Pharbitis nil from immature embryos by somatic embryogenesis. Acta Soc. Bot. Polon. 66:159–163; 1997.

    Google Scholar 

  • Trejgell, A.; Tretyn, A.; Nicoś, D. Attempt at regeneration of Pharbitis nil from fragments of vegetative organs. Acta Physiol. Plant. 20:161–166; 1998.

    CAS  Google Scholar 

  • Verron, P.; Le Nard, M.; Cohat, J. In vitro organogenic competence of different organs and tissues of lily of the valley ‘Grandiflora of Nantes’. Plant Cell Tiss. Organ Cult. 40:237–242; 1995.

    Article  Google Scholar 

  • Yang, Y.; Wada, K.; Futsuhara, Y. Comparative studies of organogenesis and plant regeneration in various soybean explants. Plant Sci. 72:101–109; 1990.

    Article  Google Scholar 

  • Zhao, J. P.; Simmonds, D. H.; Newcomb, W. High frequency production of doubled haploid plants of Brassica napus cv Topas derived from colchicine-induced microspore embryogenesis without heat shock. Plant Cell Rep. 15:668–671; 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trejgell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trejgell, A., Wójciak, A. & Tretyn, A. Photoperiodically independent flowering of Pharbitis nil plants regenerated from flower buds. In Vitro Cell.Dev.Biol.-Plant 38, 564–568 (2002). https://doi.org/10.1079/IVP2002351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002351

Key words

Navigation