Skip to main content

Advertisement

Log in

Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A regeneration system was developed for elite Egyptain maize inbred lines using immature embryos as explants. This system proved to be highly genotype-dependent. Line Gz 643 was identified as the best line, revealing the highest regeneration frequency (42.2%). Addition of l-proline and silver nitrate to culture media greatly enhanced the formation of embryogenic type II callus and the regenerability of some of the tested lines. Transformation of the scutellar tissue of immature embryos from inbred line Gz643 was performed with the particle delivery system using a single plasmid carrying both the GUS and Bar genes (pAB-6) or by co-transformation with two plasmids, pAct1-F (GUS) and pTW-a(Bar). Different transformation parameters were evaluated, i.e. ostomic treatment, acceleration pressure, and number of shots. Osmotic treatment (0.25 M sorbitol + 0.25 M mannitol) along with the use of either acceleration pressure 1300 psi and one shot per plate (for co-transformation with pAB-6) or 1100 psi and two shots per plate (for transformation with pAct1-F and pTW-a) gave the best results, as expressed by the number of blue spots in the β-glucuronidase (GUS) assay. Stable transformation was confirmed in Ro transformed plants by means of histochemical GUS assay and herbicide application. PCR and Southern blot analysis proved the integration of the full-length genes in some of the transgenics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armaleo, D.; Ye, G. N.; Klein, T. M.; Shark, K. B.; Sanford, J. C. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr. Gen. 17:97–103; 1990.

    Article  CAS  Google Scholar 

  • Armstrong, C. L.; Green, C. E. Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214; 1985.

    Article  CAS  Google Scholar 

  • Armstrong, C. L.; Green, C. E.; Phillips, R. L. Development and availability of germaplasm with high Type II culture formation response. Maize Genet. Coop. Newslett. 65:92–93; 1991.

    Google Scholar 

  • Beyer, E. M. A potent inhibitor of ethylene action in plants. Plant Physiol. 58:268–271; 1976.

    PubMed  CAS  Google Scholar 

  • Beyer, E. M. Jr. Mechanism of action of ethylene: biological activity of deuterated ethylene and evidence against exchange and cis-transisomerisation. Plant Physiol. 63:169–173; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Bohorova, N. E.; Luna, B.; Brito, R. M.; Huerta, L. D.; Hoisington, D. A. Regeneration potential of tropical, subtropical, midaltitude, and highland maize inbreds. Maydica 40:275–281; 1995.

    Google Scholar 

  • Bohorova, N. E.; Zhang, W.; Julstrum, P.; McLean, S.; Luna, B.; Brito, R. M.; Diaz, L.; Ramos, M. E.; Estanol, P.; Pacheco, M.; Salgado, M.; Hoisington, D. Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theor. Appl. Genet. 99:437–444; 1999.

    Article  CAS  Google Scholar 

  • Brettschneider, R.; Becker, D.; Lörz, H. Efficient transformation of scutellar tissue of immature maize embryos. Theor Appl. Genet. 94:737–748; 1997.

    Article  CAS  Google Scholar 

  • Carvalho, C. H. S.; Bohorova, N.; Bordallo, P. N.; Abreu, L. L.; Valicente, F. H.; Bressan, W.; Paiva, E. Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep. 17:73–75; 1997.

    Article  CAS  Google Scholar 

  • Chu, C. C.; Wang, C. C.; Sun, C. S.; Hsu, C.; Yin, K. C.; Chu, C. Y.; Bi, F. Y. Establishment of an efficient medium for anther culture of rice through comparative expreiments on the iitrogen sources. Sci. Sin. 18:659–668; 1975.

    Google Scholar 

  • Frame, B. R.; Zhang, H.; Cocciolone, S. M.; Sidorenko, L. V.; Dietrich, C. R.; Pegg, S. E.; Zhen, S.; Schnable, P. S.; Wang, K. Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell. Dev. Biol. Plant 36:21–29; 2000.

    Article  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. J.; Mangano, M. L.; Adams, T. R.; Daines, R. J.; Start, W. G.; O'Brien, J. V.; Chambers, S. A.; Adams, W. R.; Willetts, N. G.; Rice, T. B.; Mackey, C. J.; Krueger, R. W.; Kausch, A. P.; Lemaux, P. G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Green, C. E.; Phillips, R. L. Plant regeneration from tissue cultures of maize. Crop. Sci. 15:417–421; 1975.

    Article  Google Scholar 

  • Hodges, T. K.; Kamo, K. K.; Imbrie, C. W.; Becwar, M. R. Genotype specificity of somatic embryogenesis and regeneration in maize. Bio/Technology 4:219–224; 1986.

    Article  Google Scholar 

  • Johnson, C. M.; Stout, P. R.; Broyer, R. C.; Carlton, A. B. Comparative chlorine requirements of different plant species. Plant Soil 8:337–353; 1957.

    Article  CAS  Google Scholar 

  • Koziel, M. G.; Beland, G. L.; Bowman, C.; Carozzi, N. B.; Crenshaw, R.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.; Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M. R.; Merlin, E.; Rhodes, R.; Warren, G. W.; Wright, M.; Evola, S. V. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Kreike, C. M.; de Koning, J. R. A.; Krens, F. A. Non-radiactive detection of single-copy DNA-DNA hybrids. Plant Mol. Biol. Rep. 8:172–179; 1990.

    CAS  Google Scholar 

  • Lee, M.; Phillips, R. L. Genetic variants in progeny of regenerated maize plants. Genome 29:834–838; 1987.

    Google Scholar 

  • Lowe, K.; Bowen, B.; Hoerster, G.; Ross, M.; Bond, D.; Pierce, D.; Gordon-Kamm, B. Germline transformation of maize following manipulation of chimeric shoot meristems. Bio/Technology 13:677–681: 1995.

    Article  CAS  Google Scholar 

  • McCain, J. W.; Hodges, T. K. Anatomy of somatic embryos from maize embryo cultures. Bot. Gaz. 147:453–460; 1986.

    Article  Google Scholar 

  • McElroy, D.; Zhang, W.; Cao, J.; Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:167–171; 1990.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • O'Connor-Sánchez, A.; Cabrera-Ponce, J. L.; Valdez-Melara, M.; Téllez-Rodriguez, P.; Pons-Hernández, J. L.; Herrera-Estrella, L. Transgenic maize plants of tropical and subtropical genotypes obtained from calluses containing organogenic and embryogenic-like structures derived from shoot tips. Plant Cell Rep. 21:302–312; 2002.

    Article  CAS  Google Scholar 

  • O'Kennedy, M. M.; Burger, J. T.; Berger, D. K. Transformation of elite while maize using the particle inflow gun and detailed analysis of a low-copy integration event. Plant Cell Rep. 20:721–730; 2001.

    Article  CAS  Google Scholar 

  • Register, III J. C.; Peterson, D. J.; Bell, P. J.; Bullock, W. P.; Evans, I. J.; Frame, B.; Greenland, A. J.; Higgs, N. S.; Jepson, I.; Jiao, S.; Lewnau, C. J.; Sillick, J. M.; Wilson, H. M. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25:951–961; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. O.; Bendich, A. J. Extraction of DNA from milligram amounts of fresh herbarium, and mummified plant tissues. Plant Mol. Biol. 5:69–76; 1985.

    Article  CAS  Google Scholar 

  • Shark, D. B.; Smith, F. D.; Harpending, P. R.; Rasmussen, J. L.; Sanford, J. C. Biolistic transformation of a procaryote: Bacillus megeterium. Appl. Environ. Microbiol. 57:480–485; 1991.

    PubMed  CAS  Google Scholar 

  • Shillito, R. D.; Carswell, G. K.; Johnson, C. M.; DiMaio, J. J.; Harms, C. T. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7:581–587; 1989.

    Article  Google Scholar 

  • Songstad, D. D.; Armstrong, C. L.; Petersen, W. L. AgNO3 increases type II callus production from immuture embryos of maize inbred B73 and its derivatives. Plant Cell Rep. 9:699–702; 1991.

    Article  CAS  Google Scholar 

  • Songstad, D. D.; Armstrong, C. L.; Petersen, W. L.; Hairston, B.; Hinchee, M. A. W. Production of transgenic maize plants and progeny by bombardment of Hi-II immature embryos. In Vitro Cell Dev. Biol. Plant 32:179–183; 1996.

    Google Scholar 

  • Spencer, T. M.; Gordon-Kamm, W. J.; Daines, R. J.; Start, W. G.; Lemaux, P. G. Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79:625–631; 1990.

    Article  CAS  Google Scholar 

  • Steel, R. G. D.; Torrie, J. H. Principles and procedures of statistics: a biometrical approach. 2nd edn. New York: McGraw-Hill Book Co., 1980.

    Google Scholar 

  • Tomes, D. T.; Smith, O. S. The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.) germplasm. Theor. Appl. Genet. 70:505–509; 1985.

    Article  Google Scholar 

  • Vain, P.; Flament, P.; Soudain, P. Role of ethylene in embryogenic callus initiation and regeneration in Zea mays L. J. Plant Physiol. 135:537–540; 1989a.

    Google Scholar 

  • Vain, P.; McMullen, M. D.; Finer, J. J. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep. 12:84–88; 1993.

    Article  Google Scholar 

  • Vain, P.; Yean, H.; Flament, P. Enhancement of production and regeneration of embryogenic Type II callus in Zea mays L. by AgNO3. Plant Cell Tiss. Organ Cult. 18:143–151; 1989b.

    Article  Google Scholar 

  • Wan, Y.; Widholm, J. M.; Lemaux, P. G. Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L.). Planta 196:7–14; 1995.

    Article  CAS  Google Scholar 

  • Willman, M. R.; Schroll, S. M.; Hodges, T. K. Inheritance of somatic embryogenesis and plantlet regeneration from primary (Type I) callus in maize. In Vitro Cell. Dev. Biol. Plant 25:95–100; 1989.

    Article  Google Scholar 

  • Zhang, S.; Warkentin, D.; Sun, B.; Zhong, H.; Sticklen, M. B. Variation in the inheritance of expression among subclones for unselected (UidA) and selected (Bar) transgenes in maize (Zea mays L). Theor. Appl. Genet. 92:752–761; 1996.

    Article  CAS  Google Scholar 

  • Zhang, S.; Williams-Carrier, R.; Lemaux, P. G. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Rep. 21:263–270; 2002.

    Article  CAS  Google Scholar 

  • Zhong, H.; Zhang, S.; Warkentin, D.; Sun, B.; Wu, T.; Wu, R.; Sticklen, M. B. Analysis of the functional activity of the 1.4kb 5′ region of the rice actin 1 gene in stable transgenic plants of maize (Zea mays L.). Plant Sci. 116:73–84; 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanaiya A. El-Itriby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Itriby, H.A., Assem, S.K., Hussein, E.H.A. et al. Regeneration and transformation of Egyptian maize inbred lines via immature embryo culture and a biolistic particle delivery system. In Vitro Cell.Dev.Biol.-Plant 39, 524–531 (2003). https://doi.org/10.1079/IVP2003439

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003439

Key words

Navigation