Skip to main content
Log in

Power series expansion and structural analysis for life cycle assessment

  • Input-Output and Hybrid LCA (Subject Editor: Sangwon Suh)
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Goal, Scope and Background

The usefulness of power series expansion for an LCA system has often been doubted, as those systems may not possess the unique properties that enable power series expansion and analyses based on the power series. This paper surveys the existing literature on power series expansion of monetary input-output system and discusses how the power series expansion can be utilized for more general systems including the LCA model.

Methods

The inherent properties of matrices that are capable of producing power series forms for their inverse and, further, can utilize structural path analysis are analyzed. Using these analyses, the way how a matrix that is not eligible for structural analyses is converted into an eligible form is investigated. A numerical example is presented to demonstrate the findings.

Results

The necessary and sufficient condition for an indecomposable, real square technology matrix can be expressed using power series was identified. Two additional conditions for a technology matrix to be utilized for structural analyses using power series expansion are discussed as well. It was also shown that an LCA system that fulfills the Hawkins-Simon condition can be easily converted into the form that is eligible for structural analysis by rescaling the columns and rows.

Discussion

As a numerical example, an application of accumulative structural path analysis for an LCA system is shown. The implications of the results are discussed in a more plain language as well.

Conclusions

The survey presented in this paper provides not only the conditions under which a linear system is expressed using a power series form but also the way to appropriately convert a system to utilize the rich analytical tools using power series expansion for structural analyses.

Recommendations and Perspectives

Widely used LCA databases and software tools have employed the linear systems approach as the basis. Much of these developments in the domain of LCA have been made, however, in isolation of the rich findings of IOA. There will be much to benefit LCA through an active dialogue between the two disciplines.

There are rich analytical tools available through the use of power series expansion. The current survey will help software developers and LCA practitioners to apply such tools in LCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almon C (2001): Product-to-Product Tables via Product-Technology with No Negative Flows. Economic Systems Research 12, 27–43

    Article  Google Scholar 

  • Atkinson KE (1989): An introduction to numerical analysis. John Wiley & Sons, New York

    Google Scholar 

  • Bailey R (2000): Input-output modeling of material flows in industry. Doctoral Dissertation, G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA

    Google Scholar 

  • Bowker AN (1947): On the norm of a matrix. Annals of Mathematical Statistics 18, 285–288

    Article  Google Scholar 

  • Brauer A (1946): Limits for the Characteristic Roots of a Matrix. Duke Mathematical Journal 13, 387–395

    Article  Google Scholar 

  • Chiang AC (1984): Fundamental methods of mathematical economics. Third edition. McGraw-Hill Book Company, Auckland

    Google Scholar 

  • Christensen V, Pauly D (1992): ECOPATH II — a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modeling, 169–185

  • Debreu G, Herstein IN (1953): Nonnegative Square Matrices. Econometrica, 21, 597–607

    Article  Google Scholar 

  • Defourny J, Thorbecke E (1984): Structural path analysis and multiplier decomposition within a social accounting matrix framework. Economic Journal 94, 111–136

    Article  Google Scholar 

  • Fisher FM (1965): Choice of Units, Column Sums, and Stability in Linear Dynamic Systems with Nonnegative Square Matrices. Econometrica 33, 445–450

    Article  Google Scholar 

  • Fiedler M, Pták V (1962): On matrices with non-positive off-diagonal elements and positive principal minors. Czechoslovak Mathematical Journal, 12, 382–400

    Google Scholar 

  • Frischknecht R, Bollens U, Bosshart S, Ciot M, Ciseri L, Doka G, Dones R, Gantner U, Hischier R, Martin A (1996): Ökoinventare von Energiesystemen. Grundlagen für den Ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz. Auflage No.3, Gruppe Energie-Stoffe-Umwelt (ESU), Eidgenossische Technische Hochschule Zurich und Sektion Ganzheitliche Systemanalysen, Paul Scherrer Institut, Villingen, www.energieforschung.ch, Bundesamt für Energie (Hrsg), Bern

  • Frischknecht R, Kolm P (1995): Modellansatz und Algorithmus zur Berechnung von Ökobilanzen im Rahmen der Datenbank ECOINVENT. In: Schmidt M, Schorb A (eds), Stoffstromanalysen in Ökobilanzen und Öko-Audits. Springer, Berlin, pp. 80–95

    Google Scholar 

  • Frobenius G (1908): Über Matrizen aus positiven Elemente. Sitzungsberichte der Königlichen Preussischen Akademie der Wissenschaften 26, 471–476

    Google Scholar 

  • Hannon B (1973): Structure of Ecosystems. Journal of Theoretical Biology 41, 535–546

    Article  CAS  Google Scholar 

  • Hawkins D, Simon HA (1949): Note: Some conditions of macroeconomic stability. Econometrica 17, 245–248

    Article  Google Scholar 

  • Heijungs R (1994): A generic method for the identification of options for cleaner products. Ecological Economics 10, 69–81

    Article  Google Scholar 

  • Heijungs R, Suh S (2002): The Computational Structure of Life Cycle Assessment, Kluwer Academic Publisher, Dordrecht, The Netherlands

    Google Scholar 

  • Hoekstra R (2003): Structural Change of the Physical Economy — Decomposition Analysis of Physical and Hybrid Input-Output Tables, Doctoral dissertation, Free University of Amsterdam, Tinbergen Institute Research Series, Amsterdam, The Netherlands

    Google Scholar 

  • Hubacek K, Giljum S (2003): Applying Physical Input-Output Analysis to Estimate Land Appropriation (Ecological Footprints) of International Trade Activities. Ecological Economics 44, 137–151

    Article  Google Scholar 

  • Isaacson E, Keller HB (1966): Analysis of numerical methods. Dover Publications, New York

    Google Scholar 

  • Janiszowksi KB (2003): Inversion of a square matrix in processors with limited calculation abilities. International Journal of Applied Mathematics and Computation Science 13, 199–204

    Google Scholar 

  • Joshi S (1999): Product Environmental Life-Cycle Assessment Using Input-Output Techniques. Journal of Industrial Ecology 3, 95–120

    Article  CAS  Google Scholar 

  • Kagawa S, Suh S (forthcoming): Multistage process-based make-use system. In: Suh S (ed), forthcoming: Handbook of Input-Output Analysis for Industrial Ecology, Springer

  • Konijn PJA (1994): The make and use of commodities by industries-On the compilation of input-output data from the national accounts. Doctoral dissertation, University of Twente, Twente, The Netherlands

    Google Scholar 

  • Konijn PJA, de Boer S, van Dalen J (1997): Input-Output Analysis of Material Flows with Application to Iron, Steel and Zinc. Structural Change and Economic Dynamics 8, 31–45

    Article  Google Scholar 

  • Kop Jansen P, ten Raa T (1990): The choice of model in the construction of input-output coefficients matrices. International Economic Review 31, 213–227

    Article  Google Scholar 

  • Kratena K, Chovanec A, Konechy R (1992): Eine ökologische volkswirtschaftliche Gesamtrechnung für Österreich. Die Umwelt Input Output Tabelle 1983. Institute für sozial-, wirtschafts-und umweltpolitische Forschung, Wien, Austria

    Google Scholar 

  • Kratterl A, Kratena K (1990): Reale Input-Output Tabelle und ökologischer Kreislauf. Physica-Verlag, Heidelberg, Germany

    Google Scholar 

  • Lave L, Cobas-Flores E, Hendrickson C, McMichael F (1995): Using input-output analysis to estimate economy wide discharges. Environmental Science & Technology 29, 420–426

    Article  Google Scholar 

  • Lee KS (1982): A Generalized Input-Output Model of an Economy with Environmental Protection, Review of Economics and Statistics 64, 466–473

    Article  Google Scholar 

  • Lenzen M (2001): Errors in conventional and input-output-based life-cycle inventories. Journal of Industrial Ecology 4, 127–148

    Article  Google Scholar 

  • Lenzen M (2003): Environmentally important paths, linkages and key sectors in the Australian economy. Structural Change and Economic Dynamics 14, 1–34

    Article  Google Scholar 

  • Leontief WW (1936): Quantitative Input and Output Relations in the Economic Systems of the United States, The Review of Economic Statistics 18, 105–125

    Article  Google Scholar 

  • Londero E (1999): Secondary products, by-products and the commodity technology assumption. Economic Systems Research 11, 195–203

    Article  Google Scholar 

  • Meyer CD, Meyer C (2001): Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia

    Google Scholar 

  • Miller R, Blair P (1985): Input-Output Analysis: Foundations and Extensions. Prentice-Hall, Englewood Cliffs, NJ, USA

    Google Scholar 

  • Oldenburger R (1940): Infinite Powers of Matrices and Characteristics roots. Duke Mathematical Journal 6, 357–361

    Article  Google Scholar 

  • Patten BC (1982): Environs — Relativistic Elementary-Particles for Ecology. American Naturalist 119, 179–219

    Article  Google Scholar 

  • Pedersen OG (1999): Physical Input-Output Tables for Denmark. Products and Materials 1990, Air Emissions 1990–92. Statistics Denmark, Copenhagen, Denmark

    Google Scholar 

  • Peters G (2007): Efficient algorithms for life cycle assessment, input-output analysis, and Monte-Carlo analysis. Int J LCA 12(6) 375–382

    Article  Google Scholar 

  • Poole G, Boullion T (1974): A Survey on M-Matrices. SIAM Review 16, 419–427

    Article  Google Scholar 

  • ten Raa T, Chakraborty D, Small, JA (1984): An alternative treatment of secondary products in input-output analysis. Review of Economics and Statistics 66, 88–97

    Article  Google Scholar 

  • ten Raa T (1988): An alternative treatment of secondary products in input-output analysis: Frustration. Review of Economics and Statistics 70, 535–538

    Article  Google Scholar 

  • Schmidt M, Schorb A (eds) (1995): Stoffstromanalysen. In: Ökobilanzen und Öko-Audits. Springer, Germany

  • Solow R (1952): On the structure of linear models. Econometrica 20, 29–46

    Article  Google Scholar 

  • Stahmer C, Kuhn M, Braun N (2003): Physische Input-Output Tabellen, Beiträge zu den Umweltönokomischen Gesamtrechnungen. Metzler-Poeschel Verlag, Stuttgart, Germany

    Google Scholar 

  • Steenge AE (1990): The commodity technology revisited-Theoretical basis and an application to error location in the make-use framework. Economic Modeling 7, 376–387

    Article  Google Scholar 

  • Stone R, Bacharach M, Bates J (1963): Input-Output Relationships, 1951–1966, Program for Growth. Vol. 3. London, Chapman and Hall, UK

  • Suh S (2001): Accumulative Structural Path Analysis for the U.S., Presented at the Danish Prioritization Study Workshop, Copenhagen, Denmark

  • Suh S (2004a): Functions, commodities and environmental impacts in an ecological economic model. Ecological Economics 48, 451–467

    Article  Google Scholar 

  • Suh S (2004b): A Note on the Calculus for Physical Input-Output Analysis and its Application to Land Appropriation of International Trade Activities. Ecological Economics 48, 9–17

    Article  Google Scholar 

  • Suh S (2005): Theory of Materials and Energy Flow Analysis in Ecology and Economics. Ecological Modeling 189, 251–269

    Article  Google Scholar 

  • Suh S, Huppes G (2002): Economic input-output models for allocation in LCA, SETAC-Europe annual meeting, Wien, Austria

  • Suh S, Huppes G (2005) Methods in Life Cycle Inventory (LCI) of a product. Journal of Cleaner Production, 13(7) 687–697

    Article  Google Scholar 

  • Szyrmer J, Ulanowicz RE (1987): Total Flows in Ecosystems. Ecological Modeling 35, 123–136

    Article  Google Scholar 

  • Takayama A (1985): Mathematical Economics. 2nd edition, Cambridge, UK, Cambridge University Press

    Google Scholar 

  • Treloar G (1997): Extracting embodied energy paths from input-output tables: towards an input-output-based hybrid energy analysis method. Economic Systems Research 9, 375–391

    Article  Google Scholar 

  • Waugh FV (1950): Inversion of the Leontief Matrix by Power Series. Econometrica 18, 142–154

    Article  Google Scholar 

  • Weber C, Schnabl H (1998): Environmentally Important Intersectoral Flows: Insights from Main Contributions Identification and Minimal Flow Analysis. Economic Systems Research 10, 337–356

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangwon Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suh, S., Heijungs, R. Power series expansion and structural analysis for life cycle assessment. Int J Life Cycle Assess 12, 381–390 (2007). https://doi.org/10.1065/lca2007.08.360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/lca2007.08.360

Keywords

Navigation