Skip to main content
Log in

Roles of food web and heterotrophic microbial processes in upper ocean biogeochemistry: Global patterns and processes

  • Special Issue
  • Published:
Ecological Research

The growth and dynamics of plankton in the ocean vary with natural cycles, global climate change and the long-term evolution of ecosystems. The ocean is a large reservoir for CO2 and the food webs in the upper ocean play critical roles in regulating the global carbon cycle, changes in atmospheric CO2 and associated global warming. Microheterotrophs are a key component of the upper ocean food webs. Here, we report on the results of an analysis of the distribution of bacteria and related properties in the World Ocean. We found that, for the data set as a whole, there is a significant latitudinal gradient in all field-measured and computed bacterial properties, except growth rate. Gradients were, for the most part, driven by an equator-ward increase in the Southern Hemisphere. The biomass, rates of production and respiration and dissolved organic carbon concentrations were significantly higher in the Northern than the Southern hemispheres. In contrast, growth rates were the same in the two hemispheres. We conclude that the lower biomass and production in the Southern Hemisphere reflects greater top-down control by microbial grazers, which would be due to a lower abundance or activity of omnivorous zooplankton in the Southern than Northern Hemispheres. These large spatial differences in dynamics, structure and activity of the bacterial community and the microbial food web will be reflected in different patterns of carbon cycling, export and air–sea exchange of CO2 and the potential ability of the ocean to sequester carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Antoine D., Andre J.-M. & Morel A. (1996) Oceanic primary production. 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochemical Cycles 10: 57–69.

    Article  Google Scholar 

  • Antoine D. & Morel A. (1996) Oceanic primary production. 1. Adaptation of a spectral light-photosynthesis model in view of application to satellite chlorophyll observation. Global Biogeochemical Cycles. 10: 43–55.

    Article  Google Scholar 

  • Azam F. (1998) Microbial control of oceanic carbon flux: The plot thickens. Science 280: 694–696.

    Article  CAS  Google Scholar 

  • Battle M., Bender M. L., Tans P. P. et al. (2000) Global carbon sinks and their variability inferred from atmospheric O2 and delta 13C. Science 287: 2467–2470.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter S. R., Kitchell J. F. & Hodgson J. R. (1985) Cascading trophic interactions and lake productivity. Bioscience 35: 634–639.

    Google Scholar 

  • Ducklow H. W. (1999) The bacterial component of the oceanic euphotic zone. FEMS Microbial Ecology 30: 1–10.

    Article  Google Scholar 

  • Ducklow H. W. & Carlson C. (1992) Oceanic bacterial productivity. Advances in Microbial Ecology 12: 113–181.

    Google Scholar 

  • Fortier L., Le Fèvre J. & Legendre L. (1994) Export of biogenic carbon to fish and to the deep ocean: The role of large plankton microphages. Journal of Plankton Research 16: 809–839.

    Google Scholar 

  • del Giorgio P. A. & Cole J. J. (1998) Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics 29: 503–541.

    Article  Google Scholar 

  • Hansen J. E., Sato M., Lacis A., Ruedy R., Tegen I. & Matthews A. (1998) Climate forcings in the industrial era. Proceedings of the National Academy of Science USA 95: 12 753–12 758.

    Google Scholar 

  • Jumars P. A., Penry D. L., Baross J. A., Perry M. J. & Frost B. W. (1989) Closing the microbal loop: dissolved carbon pathway to heterotrophic bacteria from incomplete ingestion, digestion, and absorption in animals. Deep-Sea Research 36: 483–495.

    Article  Google Scholar 

  • Legendre. L. & Le Fèvre. J. (1995) Microbial food webs and the export of biogenic carbon in the oceans. Aquatic Microbial Ecology 9: 69–77.

    Google Scholar 

  • Legendre L. & Rassoulzadegan F. (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41: 153–172.

    Google Scholar 

  • Legendre L. & Rassoulzadegan F. (1996) Food-web mediated export of biogenic carbon in oceans: Hydrodynamic control. Marine Ecology Progress Series 145: 179–193.

    Google Scholar 

  • Longhurst A. R. (1991) Role of the marine biosphere in the global carbon cycle. Limnology and Oceanography 36: 1507–1526.

    Google Scholar 

  • Longhurst A. R. (1998) Ecological Geography of the Sea. Academic Press, New York.

    Google Scholar 

  • McQueen D. J., Post J. R. & Mills E. L. (1986) Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 43: 11–17.

    Google Scholar 

  • Matear R. J. & Hirst A. C. (1999) Climate change feedback on the future oceanic CO2 uptake. Tellus 51: 722–733.

    Article  Google Scholar 

  • Pace M. L. & Cole J. J. (1994) Comparative and experimental approaches to top-down and bottom-up regulation of bacteria. Microbial Ecology 28: 181–193.

    Article  Google Scholar 

  • Pace M. L. & Funke E. (1991) Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72: 904–914.

    Google Scholar 

  • Platt T. & Sathandrayath S. (1995) Scales, patterns and processes in marine ecosystems. In: Aquatic Ecology. (ed. P. S. Giller, A. G. Hildrew & D. G. Rafaelli) pp. 593–599. Blackwell Science, Oxford.

    Google Scholar 

  • Rassoulzadegan F. & Sheldon R. W. (1986) Predator–prey interaction of a flagelate-ciliate-copepod food chain with some observations relevant to linear biomass hypothesis. Limnology and Oceanography 31: 184–188.

    Google Scholar 

  • Redfield A. C., Ketchum B. H. & Richards F. A. (1963) The influence of organisms on the composition of seawater. In: The Sea. V. 2. (ed. M. N. Hill) pp. 26–77. Wiley-Interscience, New York.

    Google Scholar 

  • Rivkin R. B. & Legendre L. (2001) Biogenic carbon cycling in the upper ocean: Effects of microbial respiration. Science 291: 2398–2400.

    Article  Google Scholar 

  • Roman M. R., Ducklow H. W. & Fuhrman J. A. et al. (1988) Production, consumption, and nutrient cycling in a laboratory mesocosm. Marine Ecology Progress Series 42: 39–52.

    Google Scholar 

  • Sarmiento J. L., Monfray P., Maier-Reimer E., Aumount O., Murmane R. J. & Orr J. C. (2000) Sea-air CO2 fluxes and carbon transport: A comparison of three ocean general circulation models. Global Biogeochemical Cycles 14: 1267–1281.

    Article  Google Scholar 

  • Sarmiento J. L., Hughes T. M. C., Stoufler R. J. & Manabe S. (1998) Simulated response of ocean carbon cycle to anthropogenic climate warming. Nature 393: 245–249.

    Article  Google Scholar 

  • Sarmiento J. L., Le Quere C. & Pacala S. W. (1995) Limiting future atmospheric carbon dioxide. Global Biogeochemical Cycles 9: 121–137.

    Article  Google Scholar 

  • Schimel D., Alves D., Enting I.et al. (1996) Radiative forcing of climate change. In: 1995, International Panel on Climate Change. (ed. J. T. Houghton, L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg & K. Maskell) pp. 487–516. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schimel D., Enting I. G., Heimann M.et al. (1995) CO2 and the carbon cycle, in climate change. In: 1994, Intergovernmental Panel on Climate Change. (ed. J. T. Houghton, L. G. Meira Filho, J. Bruce et al.) pp. 39–71. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schlesinger W. (1997) Biogeochemistry: An Analysis of Change. Academic Press, San Diego.

    Google Scholar 

  • Steele J. H. (1991) Marine ecosystem dynamics: comparison of scales. Ecological Research 6: 175–183.

    Google Scholar 

  • Steele, J. H. & Henderson, E. W. (1994) Coupling between physical and biological scales Philosophical Transactions of the Royal Society of London Series B 343: 5–9.

    Google Scholar 

  • Takahashi T., Wanninkhof R. H., Feely R. A. R.et al. (1999) Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air, p CO2 difference. Second International Symposium on CO2 in the Oceans- the 12th Global Environment, 18–22 January 1999; Tsukuba, Japan. Centre for Global Environmental Research, National Institute of Environmental Studies, Tsukuba, Japan, pp. 9–15.

    Google Scholar 

  • Thingstad T. F., Hagström A. & Rassoulzadegan F. (1997) Accumulation of degradable DOC in surface waters: Is it caused by a malfunctioning microbial loop. Limnology and Oceanography 42: 398–404.

    Google Scholar 

  • Wassmann P. (1998) Retention versus export food chains: processes controlling sinking loss from marine pelagic systems. Hydrobiologia 363: 29–57.

    Article  Google Scholar 

  • Wickham S. A. (1995) Trophic relations between cyclopoid copepods and ciliated protists. Complex interactions link the microbial and classic food webs. Limnology and Oceanography 40: 1178–1181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Rivkin.

About this article

Cite this article

Rivkin, R., Legendre, L. Roles of food web and heterotrophic microbial processes in upper ocean biogeochemistry: Global patterns and processes. Ecol Res 17, 151–159 (2002). https://doi.org/10.1046/j.1440-1703.2002.00475.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2002.00475.x

Key words

Navigation