Skip to main content
Log in

Microsatellite analysis of pollen flow in Rhododendron metternichii var. hondoense

  • Original Articles
  • Published:
Ecological Research

Microsatellite analysis was used to characterize the patterns of pollen flow in a 150 m × 70 m quadrat containing 18 flowering trees of Rhododendron metternichii Sieb. et Zucc. var. hondoense Nakai. Using six microsatellite genetic markers and exclusion analysis, we determined the paternal trees of 216 seedlings germinated from five fruits produced by four adults. Each fruit was pollinated by a small number of largely adjacent trees, but 20–30% of pollen came from outside the quadrat. Adult trees that produced many flowers had a high self-pollination rate. A directional flow of pollen from late-blooming trees to early ones was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adams W. T. (1992) Gene dispersal within forest tree populations. New Forests 6: 217–240.

    Google Scholar 

  • Ashley M. V. & Dow B. D. (1994) The use of microsatellite analysis in population biology: Background, methods and potential applications. In: Molecular Ecology and Evolution: Approaches and Applications (eds B. Schierwater, B. Streit, G. P. Wagner & R. DeSalle) pp. 185–201. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Broyles S. B., Schnabel A., Wyatt R. (1994) Evidence for long-distance pollen dispersal in milkweeds (Asclepias exaltata). Evolution 48: 1032–1040.

    Google Scholar 

  • Bruford M. W. & Wayne R. K. (1993) Microsatellites and their application to population genetic studies. Current Opinion in Genetics and Development 3: 939–943.

    Google Scholar 

  • Campbell D. R. & Waser N. M. (1989) Variation in pollen flow within and among populations of Ipomopsis aggregata. Evolution 43: 1444–1455.

    Google Scholar 

  • Dawson I. K., Waugh R., Simons A. J., Powell W. (1997) Simple sequence repeats provide a direct estimate of pollen-mediated gene dispersal in the tropical tree Gliricidia sepium. Molecular Ecology 6: 179–183.

    Google Scholar 

  • Dow B. D. & Ashley M. V. (1998) High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. Journal of Heredity 89: 62–70.

    Google Scholar 

  • Ellstrand N. C. & Marshall D. L. (1985) Interpopulation gene flow by pollen in wild radish, Raphanus sativus. American Naturalist 126: 606–616.

    Google Scholar 

  • Fenster C. B. (1991) Gene flow in Chamaecrista fasciculata (Leguminosae) I. Gene dispersal. Evolution 45: 398–409.

    Google Scholar 

  • Forman R. T. T. (1995) Land Mosaics: The Ecology of Landscape and Regions. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hamrick J. L. (1987) Gene flow and distribution of genetic variation in plant populations. In: Differentiation Patterns in Higher Plants (ed. K. M. Urbanska) pp. 53–67. Academic Press, London.

    Google Scholar 

  • Hamrick J. L. & Murawski D. A. (1990) The breeding structure of tropical tree populations. Plant Species Biology 5: 157–165.

    Google Scholar 

  • Handel S. N. (1983) Pollination ecology, plant population structure, and gene flow. In: Pollination Biology (ed. L. Real) pp. 163–211. Academic Press, New York.

    Google Scholar 

  • Isagi Y., Kanazashi T., Suzuki W., Tanaka H., Abe T. (2000) Microsatellite analysis of the regeneration process of Magnolia obovata. Heredity 84: 143–151.

    Google Scholar 

  • Kameyama Y., Nakagoshi N., Nehira K. (1999) Safe site for seedlings of Rhododendron metternichii var. hondoense. Plant Species Biology 14: 237–242.

    Google Scholar 

  • Kohn J. R. & Casper B. B. (1992) Pollen-mediated gene flow in Cucurbita foetidissima (Cucurbitaceae). American Journal of Botany 79: 57–62.

    Google Scholar 

  • Levin D. A. (1981) Dispersal versus gene flow in plants. Annals of the Missouri Botanical Garden 68: 233–253.

    Google Scholar 

  • Levin D. A. & Kerster H. W. (1974) Gene flow in seed plants. Evolutionary Biology 7: 139–220.

    Google Scholar 

  • Maki M. & Masuda M. (1993) Pollen-mediated gene flow in a population of Cynanchum grandifolium var. nikoense (Asclepiadaceae). Plant Species Biology 8: 45–50.

    Google Scholar 

  • Marshall D. L. (1988) Effective mate choice in wild radish: Evidence for selective seed abortion and its mechanism. American Naturalist 131: 739–756.

    Google Scholar 

  • Marshall D. L. & Ellstrand N. C. (1985) Proximal causes of multiple paternity in wild radish, Raphanus sativus. American Naturalist 126: 596–605.

    Google Scholar 

  • Marshall T. C., Slate J., Kruuk L. E. B., Pemberton J. M. (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology 7: 639–655.

    Google Scholar 

  • Meagher T. R. (1986) Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most-likely male parents. American Naturalist 128: 199–215.

    Google Scholar 

  • Naito K., Isagi Y., Nakagoshi N. (1998) Isolation and characterization of microsatellites of Rhododendron metternichii Sieb. et Zucc. var. hondoense Nakai. Molecular Ecology 7: 927–928.

    Google Scholar 

  • Queller D. C., Strassmann J. E., Hughes C. R. (1993) Microsatellites and kinship. Trends in Ecology and Evolution 8: 285–288.

    Google Scholar 

  • Schaal B. A. (1980) Measurement of gene flow in Lupinus texensis. Nature 284: 450–451.

    Google Scholar 

  • Schmitt J. (1980) Pollinator foraging behavior and gene dispersal in Senecio (Compositae). Evolution 34: 934–943.

    Google Scholar 

  • Schnabel A. & Hamrick J. L. (1995) Understanding the population genetic structure of Gleditsia triacanthos L. the scale and pattern of pollen gene flow. Evolution 49: 921–931.

    Google Scholar 

  • Sork V. L., Nason J., Campbell D. R., Fernandez J. F. (1999) Landscape approaches to historical and contemporary gene flow in plants. Trends in Ecology and Evolution 14: 219–224.

    Google Scholar 

  • Stewart Jr C. N. & Via L. E. (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14: 748–750.

    Google Scholar 

  • Streiff R., Ducousso A., Lexer C., Steinkellner H., Gloessl J., Kremer A. (1999) Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. & Q. petraea (Matt.) Liebl. Molecular Ecology 8: 831–841.

    Google Scholar 

  • Thomson J. D. & Plowright R. C. (1980) Pollen carryover, nectar rewards, and pollinator behavior with special reference to Diervilla lonicera. Oecologia 46: 68–74.

    Google Scholar 

  • Thomson J. D., Price M. V., Waser N. M., Stratton D. A. (1986) Comparative studies of pollen and fluorescent dye carryover by natural pollinators of Erythronium grandiflorum. Oecologia 69: 561–566.

    Google Scholar 

  • Waser N. M. (1988) Comparative pollen and dye transfer by pollinators of Delphinium nelsonii. Functional Ecology 2: 41–48.

    Google Scholar 

  • Waser N. M. (1989) Optimal outcrossing in Ipomopsis aggregata: Seed set and offspring fitness. Evolution 43: 1097–1109.

    Google Scholar 

  • Waser N. M. (1993) Population structure, optimal outbreeding, and assortative mating in angiosperms. In: The Natural History of Inbreeding and Outbreeding (ed. N. W. Thornhill) pp. 173–199. University of Chicago Press, Chicago.

    Google Scholar 

  • Willson M. F. (1983) Plant Reproductive Ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Young H. J. & Stanton M. L. (1989) Influence of environmental quality on pollen competitive ability in wild radish. Science 258: 1631–1633.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiaki Kameyama.

About this article

Cite this article

Kameyama, Y., Isagi, Y., Naito, K. et al. Microsatellite analysis of pollen flow in Rhododendron metternichii var. hondoense. Ecol Res 15, 263–269 (2000). https://doi.org/10.1046/j.1440-1703.2000.00347.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1046/j.1440-1703.2000.00347.x

Key words

Navigation