Skip to main content

Advertisement

Log in

Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

The mechanisms of cell transformation mediated by the highly oncogenic, chimeric NPM/ALK tyrosine kinase remain only partially understood. Here we report that cell lines and native tissues derived from the NPM/ALK-expressing T-cell lymphoma (ALK+ TCL) display phosphorylation of the extracellular signal-regulated protein kinase (ERK) 1/2 complex. Transfection of BaF3 cells with NPM/ALK induces phosphorylation of EKR1/2 and of its direct activator mitogen-induced extracellular kinase (MEK) 1/2. Depletion of NPM/ALK by small interfering RNA (siRNA) or its inhibition by WHI-154 abrogates the MEK1/2 and ERK1/2 phosphorylation. The NPM/ALK-induced MEK/ERK activation is independent of c-Raf as evidenced by the lack of MEK1/2 and ERK1/2 phosphorylation upon c-Raf inactivation by two different inhibitors, RI and ZM336372, and by its siRNA-mediated depletion. In contrast, ERK1/2 activation is strictly MEK1/2 dependent as shown by suppression of the ERK1/2 phosphorylation by the MEK1/2 inhibitor U0126. The U0126-mediated inhibition of ERK1/2 activation impaired proliferation and viability of the ALK+ TCL cells and expression of antiapoptotic factor Bcl-xL and cell cycle-promoting CDK4 and phospho-RB. Finally, siRNA-mediated depletion of both ERK1 and ERK2 inhibited cell proliferation, whereas depletion of ERK 1 (but not ERK2) markedly increased cell apoptosis. These findings identify MEK/ERK as a new signaling pathway activated by NPM/ALK and indicate that the pathway represents a novel therapeutic target in the ALK-induced malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bischof D, Pulford K, Mason DY, Morris SW . (1997). Role of the nucleophosmin (NPM) portion of the non-Hodgkin's lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol 17: 2312–2325.

    Article  CAS  Google Scholar 

  • Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J et al. (2003). NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood 101: 1919–1927.

    Article  CAS  Google Scholar 

  • Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R et al. (2005). Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11: 623–629.

    Article  CAS  Google Scholar 

  • Crockett DK, Lin Z, Elenitoba-Johnson KS, Lim MS . (2004). Identification of NPM–ALK interacting proteins by tandem mass spectrometry. Oncogene 23: 2617–2629.

    Article  CAS  Google Scholar 

  • Epling-Burnette PK, Bai F, Wei S, Chaurasia P, Painter JS, Olashaw N et al. (2004). ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL). Oncogene 23: 9220–9229.

    Article  CAS  Google Scholar 

  • Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S et al. (1996). Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci USA 93: 4181–4186.

    Article  CAS  Google Scholar 

  • Hallek M, Bergsagel PL, Anderson KC . (1998). Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91: 3–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O et al. (1999). Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18: 813–822.

    Article  CAS  Google Scholar 

  • Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. (2000). Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 14: 642–656.

    Article  CAS  Google Scholar 

  • Kim SC, Hahn JS, Min YH, Yoo NC, Ko YW, Lee WJ . (1999). Constitutive activation of extracellular signal-regulated kinase in human acute leukemias: combined role of activation of MEK, hyperexpression of extracellular signal-regulated kinase, and downregulation of a phosphatase, PAC1. Blood 93: 3893–3899.

    CAS  PubMed  Google Scholar 

  • Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Mason DY et al. (1997). Retrovirus-mediated gene transfer of NPM-ALK causes lymphoid malignancy in mice. Blood 90: 2901–2910.

    CAS  PubMed  Google Scholar 

  • Marzec M, Kasprzycka M, Ptasznik A, Wlodarski P, Zhang Q, Odum N et al. (2005). Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab Invest 85: 1544–1554.

    Article  CAS  Google Scholar 

  • Matsumoto S, Miyagishi M, Akashi H, Nagai R, Taira K . (2005). Analysis of double-stranded RNA-induced apoptosis pathways using interferon-response noninducible small interfering RNA expression vector library. Biol Chem 280: 25687–25696.

    Article  CAS  Google Scholar 

  • Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D et al. (2001). Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108: 851–859.

    Article  CAS  Google Scholar 

  • Morgan MA, Dolp O, Reuter CW . (2001). Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 97: 1823–1834.

    Article  CAS  Google Scholar 

  • Morris SW, Kirstein MN, Valentine MB, Dittmer KG, Shapiro DN, Saltman DL et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science 263: 1281–1284.

    Article  CAS  Google Scholar 

  • Motegi A, Fujimoto J, Kotani M, Sakuraba H, Yamamoto T . (2004). ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 117: 3319–3329.

    Article  CAS  Google Scholar 

  • Pardo OE, Arcaro A, Salerno G, Raguz S, Downward J, Seckl MJ . (2002). Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway: correlation with resistance to etoposide-induced apoptosis. J Biol Chem 277: 12040–12046.

    Article  CAS  Google Scholar 

  • Platanias LC . (2003). Map kinase signaling pathways and hematologic malignancies. Blood 101: 4667–4679.

    Article  CAS  Google Scholar 

  • Pratt G . (2002). Molecular aspects of multiple myeloma. Mol Pathol 55: 273–283.

    Article  CAS  Google Scholar 

  • Roux PP, Blenis J . (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68: 320–344.

    Article  CAS  Google Scholar 

  • Shiota M, Fujimoto J, Semba T, Satoh H, Yamamoto T, Mori S . (1994). Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line, AMS3. Oncogene 9: 1567–1574.

    CAS  PubMed  Google Scholar 

  • Souttou B, Carvalho NB, Raulais D, Vigny M . (2001). Activation of anaplastic lymphoma kinase receptor tyrosine kinase induces neuronal differentiation through the mitogen-activated protein kinase pathway. J Biol Chem 276: 9526–9531.

    Article  CAS  Google Scholar 

  • Tanaka T, Kyrokawa M, Ueki K, Tanaka K, Imai Y, Mitani K et al. (1996). The extracellular signal-regulated kinase pathway phosphorylates AML1, an acute myeloid leukemia gene product, and potentially regulates its transactivation ability. Mol Cell Biol 16: 3967–3979.

    Article  CAS  Google Scholar 

  • Towatari M, Iida H, Tanimoto M, Iwata H, Hamaguchi M, Saito H . (1997). Constitutive activation of mitogen-activated protein kinase pathway in acute leukemia cells. Leukemia 11: 479–484.

    Article  CAS  Google Scholar 

  • Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S . (1996). Protein kinase C activates the MEK–ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 271: 23512–23519.

    Article  CAS  Google Scholar 

  • Ussar S, Voss T . (2004). MEK1 and MEK2, different regulators of the G1/S transition. J Biol Chem 279: 43861–43869.

    Article  CAS  Google Scholar 

  • Wan W, Albom MS, Lu L, Quail MR, Becknell NC, Weinberg LR et al. (2006). Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107: 1617–1623.

    Article  CAS  Google Scholar 

  • Wang X, Wang Q, Hu W, Evers BM . (2004). Regulation of phorbol ester-mediated TRAF1 induction in human colon cancer cells through a PKC/RAF/ERK/NF-kappaB-dependent pathway. Oncogene 23: 1885–1895.

    Article  CAS  Google Scholar 

  • Wasik MA . (2002). Expression of anaplastic lymphoma kinase in non-Hodgkin's lymphomas and other malignant neoplasms. Biological, diagnostic, and clinical implications. Am J Clin Pathol 118: S81–S92.

    PubMed  Google Scholar 

  • Wen-Sheng W . (2006). Protein kinase C alpha trigger Ras and Raf-independent MEK/ERK activation for TPA-induced growth inhibition of human hepatoma cell HepG2. Cancer Lett 239: 27–35.

    Article  Google Scholar 

  • Wlodarski P, Kasprzycka M, Liu X, Marzec M, Robertson ES, Slupianek A et al. (2005). Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum. Cancer Res 65: 7800–7808.

    Article  CAS  Google Scholar 

  • Zhang Q, Raghunath PN, Xue L, Majewski M, Carpentieri DF, Odum N et al. (2002). Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J Immunol 168: 466–474.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the National Cancer Institute – R01-CA89194 and R01-CA96856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Wasik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marzec, M., Kasprzycka, M., Liu, X. et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 26, 813–821 (2007). https://doi.org/10.1038/sj.onc.1209843

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209843

  • Springer Nature Limited

Keywords

This article is cited by

Navigation