Skip to main content

Advertisement

Log in

PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

We previously demonstrated that protein kinase C-η (PKC-η) mediates a phorbol 12-myristate-13-acetate (PMA)-induced proliferative response in human glioblastoma (GBM) cells. In this report, we show that PMA-stimulated activation of PKC-η in U-251 GBM cells resulted in activation of both Akt and the mammalian target of rapamycin (mTOR) signaling pathways and an increase in cell proliferation. Expression of a kinase dead PKC-η (PKC-ηKR) construct reduced the basal and PMA-evoked proliferation of PKC-η-expressing U-251 GBM cells, as well as abrogated the PMA-induced activation of Akt, mTOR, and the mTOR targets 4E-BP1 and STAT-3. Treatment of cells with the PI-3 kinase inhibitor LY294002 (10 μ M) or the mTOR inhibitor rapamycin (10 nM) also reduced PMA-induced proliferation and cell-cycle progression. Expression of a constitutively active PKC-η (PKC-ηΔNPS) construct in a GBM cell line with no endogenous PKC-η (U-1242) also provided evidence that PKC-η targets the Akt and mTOR signaling pathways. Moreover, activation of 4E-BP1 and STAT-3 in both PMA-treated U-251 and PKC-ηΔNPS-expressing U-1242 GBM cells was inhibited by rapamycin. However, activation of Akt, but not mTOR was inhibited by the PI-3 kinase inhibitor LY294002. This study identifies Akt and mTOR as downstream targets of PKC-η that are involved in GBM cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P and Hemmings BA . (1996). EMBO J., 15, 6541–6551.

  • Aoki M, Blazek E and Vogt PK . (2001). Proc. Natl. Acad. Sci. USA, 98, 136–141.

  • Basu A . (1993). Pharmacol. Ther., 59, 257–280.

  • Benzil DL, Finkelstein SD, Epstein MH and Finch PW . (1992). Cancer Res., 52, 2951–2956.

  • Blobe GC, Obeid LM and Hannun YA . (1994). Cancer Metast. Rev., 13, 411–431.

  • Bogler O, Wren D, Barnett SC, Land H and Noble M . (1990). Proc. Natl. Acad. Sci. USA, 87, 6368–6372.

  • Bromberg JF, Wizeszcynska MH, Devgan G, Zhao Y, Pestell RG and Albanese C Darnell Jr JE . (1999). Cell, 98, 295–303.

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence Jr JC and Abraham RT . (1997). Science, 277, 99–101.

  • Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS and Jove R . (1999). Immunity, 10, 105–115.

  • Choe Y, Jung H, Khang I and Kim K . (2003). J Neuroendocrinol., 15, 508–515.

  • Couldwell WT, Uhm JH, Antel JP and Yong VW . (1991). Neurosurgery, 29, 880–887.

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF and Collins VP . (1991). Cancer Res., 51, 2164–2172.

  • Eldar H, Zisman Y, Ullrich A and Livneh E . (1990). J. Biol. Chem., 265, 13290–13296.

  • Fadden P, Haystead TA and Lawrence Jr JC . (1997). J. Biol. Chem., 272, 10240–10247.

  • Fima E, Shtutman M, Libros P, Missel A, Shahaf G, Kahana G and Livneh E . (2001). Oncogene, 20, 6794–6804.

  • Fingar DC, Salama S, Tsou C, Harlow E and Blenis J . (2002). Genes Dev., 16, 1472–1487.

  • Frey MR, Saxon ML, Zhao X, Rollins A, Evans SS and Black JD . (1997). J. Biol. Chem., 272, 9424–9435.

  • Fujisawa H, Kurer M, Reis RM, Yonekawa Y, Kelihues P and Ohgaki H . (1999). Am. J. Pathol., 155, 387–394.

  • Garcia R and Jove R . (1998). J. Biomed. Sci., 5, 79–85.

  • Gescher A . (1992). Br. J. Cancer, 66, 10–19.

  • Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N and Hay N . (1998). Genes Dev., 12, 502–513.

  • Gruber JR, Ohno S and Niles RM . (1992). J. Biol. Chem., 267, 13356–13360.

  • Guha A, Dashner K, Black PM, Wagner JA and Stiles CD . (1995). Int. J. Cancer, 60, 168–173.

  • Guizzetti M, Wei M and Costa LG . (1998). Eur. J. Pharmacol., 359, 223–233.

  • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C and Avruch J . (1998). J. Biol. Chem., 273, 14484–14494.

  • Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N, Sabatini D and Peterson AS . (2001). Proc. Natl. Acad. Sci. USA, 98, 13796–13801.

  • Hesselager AG, Uhrbom L, Westermark B and Nister M . (2003). Cancer Res., 63, 4305–4309.

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RR and Fuller GN . (2000). Nat. Genet., 25, 55–57.

  • Hussaini IM, Karns LR, Vinton G, Carpenter JE, Redpath GT, Sando JJ and VandenBerg SR . (2000). J. Biol. Chem., 275, 22348–22354.

  • Jiang BH, Aoki M, Zheng JZ, Li J and Vogt PK . (1999). Proc. Natl. Acad. Sci. USA, 96, 2077–2081.

  • Kashiwagi M, Ohba M, Watanabe H, Ishino K, Kasahara K, Sanai Y, Taya Y and Kuroki T . (2000). Oncogene, 19, 6334–6341.

  • Kijima T, Niwa H, Steinman RA, Drenning SD, Gooding WE, Wentzel AL, Xi S and Grandis JR . (2002). Cell Growth Differ., 13, 355–362.

  • Kimball SR, Shantz LM, Horetsky RL and Jefferson LS . (1999). J. Biol. Chem., 274, 11647–11652.

  • Kindregan HC, Rosenbaum SE, Ohno S and Niles RN . (1994). J. Biol. Chem., 269, 27756–27761.

  • Konopka G and Bonni A . (2003). Curr. Mol. Med., 3, 73–84.

  • Kozak M . (1991). J. Biol. Chem., 266, 19867–19870.

  • Krasagakis K, Lindschau C, Fimmel S, Eberle J, Quass P, Haller H and Orfanos CE . (2004). J. Cell Physiol., 199, 381–387.

  • Livneh E, Shimon T, Bechor E, Doki Y, Schieren E and Weinstein IB . (1996). Oncogene, 12, 1545–1555.

  • Mayer M, Bhakoo K and Noble M . (1994). Development, 120, 143–153.

  • Mayer M, Bogler O and Noble M . (1993). Glia, 8, 12–19.

  • McKinnon RD, Smith C, Behar T, Smith T and Dubois-Dalcq M . (1990). Glia, 7, 245–254.

  • Molkentin JD and Dorn GW . (2001). Ann. Rev. Physiol., 63, 391–426.

  • Nakaigawa N, Hirai S, Mizuno K, Shuin T, Hosaka M and Ohno S . (1996). Biochem. Biophys. Res. Commun., 222, 95–100.

  • Nave BT, Ouwens M, Withers DJ, Alessi DR and Shepherd PR . (1999). Biochem. J., 1, 427–431.

  • Nishizuka Y . (1984). Nature, 308, 693–698.

  • Nishizuka Y . (1988). Nature, 334, 661–665.

  • Nishizuka Y . (1995). FASEB J., 9, 484–496.

  • Ohba M, Ishino K, Kashiwagi M, Kawabe S, Chida K, Huh N and Kuroki T . (1998). Mol. Cell. Biol., 18, 5199–5207.

  • Okada Y . (2000). Verh. Dtsch. Ges. Pathol., 84, 33–42.

  • Patti ME, Brambilla E, Luzi L, Landaker EJ and Kahn CR . (1998). J. Clin. Invest., 101, 1519–1529.

  • Pause A, Methot N, Svitkin Y, Merrick WC and Sonenberg N . (1994). EMBO J., 13, 1205–1215.

  • Rajan P and Mckay RD . (1998). J. Neurosci., 18, 3620–3629.

  • Resnick MS, Luo X, Vinton G and Sando JJ . (1997). Cancer Res., 57, 2209–2215.

  • Rolli-Derkinderen M, Machavoine F, Baraban JM, Grolleau A, Beretta L and Dy M . (2003). J. Biol. Chem., 278, 18859–18867.

  • Rooprai HK, Vanmeter T, Panou C, Schnull S, Trillo-Pazos G, Davies D and Pilkington GJ . (1999). Int. J. Dev. Neurosci., (5–6), 613–623.

  • Sano T, Lin H, Chen X, Langford LA, Koul D, Bondy ML, Hess KR, Myers JN, Hong YK, Yung WK and Steck PA . (1999). Cancer Res., 59, 1820–1824.

  • Schalm SS, Fingar DC, Sabatini DM and Blenis J . (2003). Curr. Biol., 13, 797–806.

  • Todo T, Shitara N, Nakamura H, Takakura K and Ikeda K . (1991). Neurosurgery, 108, 11–16.

  • Wang X, Campbell LE, Miller CM and Proud GC . (1998). Biochem. J., 183, 261–267.

  • Ways DK, Kukoly CA, deVente J, Hooker JL, Bryant WO, Posekany KJ, Fletcher DJ, Cook PP and Parker PJ . (1995). J. Clin. Invest., 95, 1906–1915.

  • Weis J, Schonrock LM, Zuchner SL, Lie DC, Sure U, Schul C, Stogbauer F, Ringelstein EB and Halfter H . (1999). J. Neurooncol., 44, 243–253.

  • Welsh GI, Miller CM, Loughlin AJ, Price NT and Proud CG . (1998). FEBS Lett., 421, 125–130.

  • Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ and Abraham RT . (1995). Prog. Cell Cycle Res., 1, 53–71.

  • Yamaguchi K, Ogita K, Nakamura S and Nishizuka Y . (1995). Biochem. Biophys. Res., 210, 639–647.

  • Yamamoto M, Ueno Y, Hayashi S and Fukushima T . (2002). Anticancer Res., 6C, 4265–4268.

  • Yokogami K, Wakisaka S, Avruch J and Reeves SA . (2000). Curr. Biol., 10, 47–50.

Download references

Acknowledgements

We thank John B Schell and Alex M Ward for helpful advice on retrovirus construction. We also thank Janet V Cross and Stacey A Trotter for helpful discussions. This work was supported by Grant CA90851 (National Cancer Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean E Aeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeder, S., Martin, P., Soh, JW. et al. PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene 23, 9062–9069 (2004). https://doi.org/10.1038/sj.onc.1208093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208093

  • Springer Nature Limited

Keywords

This article is cited by

Navigation