Skip to main content

Advertisement

Log in

Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

The mitochondrial apoptosis pathway mediates cell death through the release of various pro-apoptotic factors including cytochrome c and Smac, the second mitochondrial activator of caspases, into the cytosol. Smac was shown previously to inhibit IAP proteins and to facilitate initiation of the caspase cascade upon cytochrome c release. To investigate Smac function during apoptosis and to explore Smac as an experimental cancer therapeutic, we constructed an expression system based on a single adenoviral vector containing Smac under control of the Tet-off system supplied in cis. Conditional expression of Smac induced apoptosis in human HCT116 and DU145 carcinoma cells regardless of the loss of Bax or overexpression of Bcl-xL. Nevertheless, apoptosis induced by Smac was associated with cytochrome c release and breakdown of the mitochondrial membrane potential. This indicates that Smac acts independently of Bax and Bcl-xL during initiation of apoptosis and triggers a positive feedback loop that results in Bax/Bcl-xL-independent activation of mitochondria. In caspase-proficient cells, Smac-induced apoptosis could be inhibited partially by cell-permeable LEHD (caspase-9 inhibitor) and DEVD (caspase-3 inhibitor) peptides. Furthermore, loss of caspase-3 expression in MCF-7 cells carrying a caspase-3 null mutation completely abrogated the sensitivity for Smac-induced apoptotic or nonapoptotic, necrosis-like cell death, while re-expression of caspase-3 conferred sensitivity. Altogether, caspase-3 but not caspase-9 activation was necessary for execution of Smac-induced cell death. Notably, Smac did not induce caspase-9 processing in the absence of caspase-3. Thus, caspase-9 processing occurs secondary to caspase-3 activation during Smac-induced apoptosis. Altogether, Smac is capable of circumventing defects in mitochondrial apoptosis signaling such as loss of Bax or overexpression of Bcl-xL that are frequently observed in tumor cells resistant to anticancer therapy. Consequently, Smac appears to be a promising therapeutic target in anticancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Anderson RD, Haskell RE, Xia H, Roessler BJ and Davidson BL . (2000). Gene Therapy, 7, 1034–1038.

  • Bosanquet AG, Sturm I, Wieder T, Essmann F, Bosanquet MI, Head DJ, Dörken B and Daniel PT . (2002). Leukemia, 16, 1035–1044.

  • Brand K, Arnold W, Bartels T, Lieber A, Kay MA, Strauss M and Dörken B . (1997). Cancer Gene Ther., 4, 9–16.

  • Chai J, Du C, Wu JW, Kyin S, Wang X and Shi Y . (2000). Nature, 406, 855–862.

  • Cosset FL, Takeuchi Y, Battini JL, Weiss RA and Collins MK . (1995). J. Virol., 69, 7430–7436.

  • Daniel PT, Sturm I, Ritschel S, Friedrich K, Dörken B, Bendzko P and Hillebrand T . (1999). Anal. Biochem., 266, 110–115.

  • Du C, Fang M, Li Y, Li L and Wang X . (2000). Cell, 102, 33–42.

  • Ekert PG, Silke J, Hawkins CJ, Verhagen AM and Vaux DL . (2001). J. Cell Biol., 152, 483–490.

  • Friedrich K, Wieder T, von Haefen C, Radetzki S, Schulze-Osthoff K, Jänicke R, Dörken B and Daniel PT . (2001). Oncogene, 20, 2749–2760.

  • Fulda S, Wick W, Weller M and Debatin KM . (2002). Nat. Med., 8, 808–815.

  • Gillissen B, Essmann F, Graupner V, Stärck L, Radetzki S, Dörken B, Schulze-Osthoff K and Daniel PT . (2003). EMBO J., 22, 3580–3590.

  • Gossen M and Bujard H . (1992). Proc. Natl. Acad. Sci. USA, 89, 5547–5551.

  • Güner D, Sturm I, Hemmati PG, Hermann S, Hauptmann S, Wurm R, Budach V, Dörken B, Lorenz M and Daniel PT . (2003). Int. J. Cancer, 103, 445–454.

  • Guo F, Nimmanapalli R, Paranawithana S, Wittman S, Griffin D, Bali P, O'Bryan E, Fumero C, Wang HG and Bhalla K . (2002). Blood, 99, 3419–3426.

  • Hemmati PG, Gillissen B, von Haefen C, Wendt J, Stärck L, Güner D, Dörken B and Daniel PT . (2002). Oncogene, 21, 3149–3161.

  • Jänicke RU, Sprengart ML, Wati MR and Porter AG . (1998). J. Biol. Chem., 273, 9357–9360.

  • Li LY, Luo X and Wang X . (2001). Nature, 412, 95–99.

  • Lorenzo HK, Susin SA, Penninger J and Kroemer G . (1999). Cell Death Differ., 6, 516–524.

  • Martinou JC and Green DR . (2001). Nat. Rev. Mol. Cell Biol., 2, 63–67.

  • Mrozek A, Petrowsky H, Sturm I, Krauss J, Hermann S, Hauptmann S, Lorenz M and Daniel P . (2003). Cell Death Differ., in press.

  • Okada H, Suh WK, Jin J, Woo M, Du C, Elia A, Duncan GS, Wakeham A, Itie A, Lowe SW, Wang X and Mak TW . (2002). Mol. Cell Biol., 22, 3509–3517.

  • Prokop A, Wieder T, Sturm I, Essmann F, Seeger K, Wuchter C, Ludwig W-D, Henze G, Dörken B and Daniel PT . (2000). Leukemia, 14, 1606–1613.

  • Radetzki S, Köhne CH, von Haefen C, Gillissen B, Sturm I, Dörken B and Daniel PT . (2002). Oncogene, 21, 227–238.

  • Raisova M, Hossini A, Eberle J, Riebeling C, Wieder T, Sturm I, Daniel PT, Orfanos CE and Geilen CC . (2001). J. Invest. Dermatol., 177, 333–340.

  • Rau B, Sturm I, Lage H, Berger S, Schneider U, Hauptmann S, Wust P, Riess H, Schlag PM, Dörken B and Daniel PT . (2003). J. Clin. Oncol., in press.

  • Roberts DL, Merrison W, MacFarlane M and Cohen GM . (2001). J. Cell Biol., 153, 221–228.

  • Schelwies K, Sturm I, Grabowski P, Scherübl H, Schindler I, Hermann S, Stein H, Buhr HJ, Riecken EO, Zeitz M, Dörken B and Daniel PT . (2002). Int. J. Cancer, 99, 589–596.

  • Slee EA, Keogh SA and Martin SJ . (2000). Cell Death Differ., 7, 556–565.

  • Sturm I, Bosanquet AG, Hermann S, Güner D, Dörken B and Daniel PT . (2003). Cell Death Differ., 10, 477–484.

  • Sturm I, Petrowsky H, Volz R, Lorenz M, Radetzki S, Hillebrand T, Wolff G, Hauptmann S, Dörken B and Daniel PT . (2001). J. Clin. Oncol., 19, 2272–2281.

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K and Takahashi R . (2001). Mol. Cell, 8, 613–621.

  • van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ and Vandenabeele P . (2002). Cell Death Differ., 9, 1031–1042.

  • Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, Day CL, Tikoo A, Burke R, Wrobel C, Moritz RL, Simpson RJ and Vaux DL . (2002). J. Biol. Chem., 277, 445–454.

  • von Haefen C, Wieder T, Essmann F, Schulze-Osthoff K, Dörken B and Daniel PT . (2003). Oncogene, 22, 2236–2247.

  • von Haefen C, Wieder T, Gillissen B, Stärck L, Graupner V, Dörken B and Daniel PT . (2002). Oncogene, 21, 4009–4019.

  • Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X and Shi Y . (2000). Nature, 408, 1008–1012.

  • Zhang L, Yu J, Park BH, Kinzler KW and Vogelstein B . (2000). Science, 290, 989–992.

Download references

Acknowledgements

The technical assistance of Antje Richter is gratefully acknowledged. We wish to thank Dr. Bert Vogelstein, Johns Hopkins Cancer Center, Baltimore, for the kind gift of Bax-deficient HCT116 cells. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB 506, Da238/4-1 and Da238/4-2), and the European Union RTN network ‘Oncodeath’. AH was a recipient of a fellowship from the DFG graduate college 331. PTD, PGH and MS are supported by the Deutsche Krebshilfe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter T Daniel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasenjäger, A., Gillissen, B., Müller, A. et al. Smac induces cytochrome c release and apoptosis independently from Bax/Bcl-xL in a strictly caspase-3-dependent manner in human carcinoma cells. Oncogene 23, 4523–4535 (2004). https://doi.org/10.1038/sj.onc.1207594

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207594

  • Springer Nature Limited

Keywords

This article is cited by

Navigation