Skip to main content

Advertisement

Log in

Delivering antisense telomerase RNA by a hybrid adenovirus/ adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Activated telomerase is frequently detected in cancer cells and is able to maintain and stabilize the integrity of telomeres; it also contributes to unlimited divisions in cancer cells. Recently, a new generation of selective anticancer strategies is under development targeting the blockage of telomerase activity either at the protein level or telomerase RNA. Here, we report suppression of the malignant phenotype by the expression of the full-length antisense human telomerase RNA (hTR) delivered by a novel hybrid vector recombining adenovirus and adeno-associated virus (vAd–AAV). The hybrid vector vAd–AAV retained the unique traits from two parental viruses, such as high efficiency of gene transfer in mammalian cells and the ability to integrate into the genomic DNA of host cells. The stable expression of antisense hTR in MCF-7 cells significantly suppressed telomerase activity and progressively shortened telomere length for 30 population doublings (PD30). Expression of antisense hTR leads to a telomere-based growth arrest and the induction of spontaneous apoptosis. Antisense hTR decreased soft agar colony formation and reduced the cell proliferation, leading to exit from the cell cycle at G1 at PD15. The expression of antisense hTR also sensitized MCF-7 cells to apoptosis induced by sodium butyrate or serum starvation. Our study demonstrates that delivering antisense hTR by the hybrid Ad/AAV vector is an effective antineoplastic gene therapeutic strategy, which significantly suppresses the malignant phenotype and enhances apoptosis of human breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ali M, Lemoine NR and Ring CJ . (1994). Gene Ther., 1, 367–384.

  • Andrew NS, Mervyn GS . (1994). Cancer Gene Therapy, 1, 165–169.

  • Avilion AA, Piatyszek MA, Gupta J, Shay JW, Bacchetti S and Greider CW . (1996). Cancer Res., 56, 645–650.

  • Berns KI and Linden RM . (1995). BioEssays, 17, 237–245.

  • Bisoffi M, Chakerian AE, Fore ML, Bryant JE, Hernandez JP, Moyzis and Griffith JK . (1998). Eur. J. Cancer, 34, 1242–1249.

  • Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA and Greider CW . (1997). Cell, 91, 25–34

  • Bodnar AG, Kim NW, Effros RB and Chiu C-P . (1996). Exp. Cell Res., 228, 58–64.

  • Campisi J . (1999). The Molecular Basis of Cell Cycle and Growth Control. In Stein G, Baserga R, Giordano A, Denhardt D (eds). Wiley-Liss Press: New York. pp 348–373.

    Google Scholar 

  • Campisi J, Dimri GP and Hara E . (1996). Handbook of the Biology of Aging. In Schneider E, Rowe J (eds). Academic Press: New York, pp. 121–149.

    Google Scholar 

  • Chiu C-P and Harley CB . (1997). Proc. Soc. Exp. Biol. Med., 214, 99–106.

  • Collins K and Mitchell JR . (2002). Oncogene, 21, 564–579.

  • Counter CM,, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB and Bacchetti S . (1992). EMBO J., 11, 1921–1929.

  • Di Leonardo A, Linker SP, Clarkin K and Wahl GM . (1994). Genes Dev., 8, 2540–2551.

  • Douglas J . (1994). Cancer Gene Ther., 1, 51–64.

  • Ducreast A-L, Szutorisz H, Lingner J and Nabholz M . (2002). Oncogene, 21, 541–552.

  • Elenitoba-Johnson KSJ . (2001). Am. J. Pathol., 159, 405–410.

  • Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider CW and Villeponteau B . (1995) Science 269, 1236–1241

  • Ferrari FK, Samulski T, Shenk T and Samulski RJ . (1996). J. Virol., 70, 3227–3234.

  • Gonzalez-Suarez E, Samper E, Flores JM and Blasco MA . (2001). EMBO J., 20, 2619–2630.

  • Guilbaud NF, Gas N, Dupont MA and Valette A . (1990). J. Cell Physiol., 145, 162–172.

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW and Weinberg RA . (1999a). Nature, 400, 464–468.

  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A, Beijersbergen RL, Knoll JHM, Meyerson M and Weinberg RA . (1999b). Nat. Med, 5, 1164–1170.

  • Hahn WC . (2001). Clin. Cancer Res., 7, 2953–2954.

  • Harle-Bachor C and Boukamp P . (1996). Proc. Natl. Acad. Sci. USA, 93, 6476–6481.

  • Harley CB, Futcher AB, Greider CW . (1990). Nature, 345, 458–460.

  • Helbing CC, Wellington CL, Gogela-Spehar M, Cheng T, Pinchbeck GG and Johnston RN . (1998). Oncogene, 17, 1491–1501.

  • Herbert BS, Pitts AE, Baker SI, Hamilton SE, Wright WE, Shay JW and Corey DR . (1999). Proc. Natl. Acad. Sci. USA, 96, 14276–14281.

  • Hiyama E and Hiyama K . (2002). Oncogene, 21, 643–649.

  • Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA, Shay JW, Ishioka S and Yamakido M . (1995). J. Immunol., 155, 3711–3715.

  • Holt SE, Wright WE and Shay JW . (1997). Eur. J. Cancer, 33, 761–766.

  • Hsiao R, Sharma HW, Ramakrishnan S, Keith E and Narayanan R . (1997). Anticancer Res., 17, 827–832.

  • Karlseder J, Broccoli D, Dai Y, Hardy S and de Lange T . (1999). Science, 283, 1321–1325.

  • Karlseder J, Smogorzewska A and de Lange T . (2002). Science, 295, 2446–2449.

  • Kim MM, Rivera MA, Botchlkina IL, Shalaby R, Thor AD and Blackburn EH . (2001). Proc. Natl. Acad. Sci. USA, 98, 7982–7987.

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Coviello GM, Wright WE, Weinrich SL and Shay JW . (1994). Science, 266, 2011–2015.

  • Kim S-H, Kamainker P and Campisi J . (2002). Oncogene, 21, 503–511.

  • Kochanek S . (1999). Hum. Gene Ther., 10, 2451–2459.

  • Kondo S, Tanaka Y, Kondo Y, Hitomi M, Barnett GH, Ishizaka Y, Liu J, Haqqi T, Nishiyama A, Villeponteau B, Cowell JK and Barna BP . (1998). FASEB J., 12, 801–811.

  • Kotin RM, Linden RM and Berns KI . (1992). EMBO J., 11, 5071–5078.

  • Kotin RM, Menninger JC, Ward DC and Berns KI . (1991). Genomics, 10, 831–834.

  • Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M and Berns KI . (1990). Proc. Natl. Acad. Sci. USA, 87, 2211–2215.

  • Kyo S, Takakura M, Kohama T and Inoue M . (1997). Cancer Res., 57, 610–614.

  • Lee K-H, Rudolph KL, Ju YJ, Greenberg RA, Cannizzaro L, Chin L, Weiler SR and Depinho RA . (2001). Proc. Natl. Acad. Sci. USA, 98, 3381–3386.

  • Li ZD, Yi W, Qi YP and Li Y . (2000). Acta Biochem. Biophys. Sin., 32, 383–389.

  • Lieber A, Steinwaerder DS, Carlson CA and Kay MA . (1999). J. Virol., 73, 9314–9324.

  • Lu MS and Shenk T . (1996). J. Virol., 70, 8850–8857.

  • Mitchell JR, Wood E, Collins K . (1999). Nature, 402, 551–555.

  • Mitchell JR, Collins K . (2000). Mol. Cell, 6, 361–371.

  • Niida H, Matsumoto T, Satoh H, Shiwa M, Tokutake Y, Furuichi Y and Shinkai Y, . (1998). Nat. Genet., 19, 203–206.

  • Philpott NJ, Giraud-Wali C, Dupuis C, Gomos J, Hamilton H, Berns KI and Falck-Pedersen E . (2002). J. Virol., 76, 5411–5421.

  • Poole JC, Andrews LG and Tollefsbol TO . (2001). Gene, 269, 1–12.

  • Prowse KR and Greider CW . (1995). Proc. Natl. Acad. Sci. USA, 92, 4818–4822.

  • Recchia A, Parks RJ, Lamartina S, Toniatti C, Pieroni L, Palombo F, Ciliberto G, Graham FL, Cortese R, LaMonica N and Colloca S . (1999). Proc. Natl. Acad. Sci. USA, 96, 2615–2620.

  • Richard JS, Chang LS and Shenk T . (1989). J. Virol., 63, 3822–3828.

  • Robles SJ and Adami GR . (1998). Oncogene, 16, 1113–1123.

  • Schulick A, Vassali G, Dunn P, Dong G, Rade J, Zamarron C and Dichek D . (1997). J. Clin. Invest., 99, 209–219.

  • Shay JW and Wright WE . (2001). Novartis Found. Symp., 235, 116–125.

  • Shayakhmetov DM, Carlson CA, Stecher H, Li Q, Stamatoyannopoulos G and Lieber A . (2002). J. Virol., 76, 1135–1143.

  • Shin I, Bakin AV, Rodeck U, Brunet A and Arteaga CL . (2001). Mol. Biol. Cell, 12, 3328–3339.

  • Smith Jr RH and Kotin RM (2002). Mobile DNA II, Craig NL, Craigie R, Gellert M and Lambowitz AM (eds). ASM Press: Washington, DC, pp. 905–923.

    Book  Google Scholar 

  • Srivastava A, Lusby EW and Berns KI . (1983). J. Virol., 45, 555–564.

  • Strahl C and Blackburn EH . (1996). Mol. Cell. Biol., 16, 53–65.

  • Tsao JL, Lukas J, Yang X, Shah A, Press M and Shibata D . (1997). Clin. Cancer Res., 3, 627–631.

  • Wang FS, Zhang XW and Tong TJ . (1997a). J. Beijing Med. Univ., 29, 295–298.

  • Wang WG, Dou YL and Tong TJ . (1997b). J. Beijing Med. Univ., 29, 490–492.

  • Wang WG and Tong TJ . (1999). Chin. J. Biochem. Mol. Biol., 15, 655–657.

  • Wright WE and Shay JW . (1996). Modern Cell Biology Series – Cellular Aging and Cell Death., Holbrook NJ, Martin GR, Lockshin RA (eds). Wiley & Sons: New York, pp. 153–167.

    Google Scholar 

  • Wright WE, Brasiskyte D, Piatyszek MA and Shay JW . (1996). EMBO J., 15, 1734–1741.

  • Yamamoto I, Matsunaga T, Sakata K, Nakamura Y, Doi S and Hanmyou F . (1996). J. Biochem (Tokyo), 119, 1056–1061.

  • Zhang XW and Tong TJ . (2001). Chin. J. Biochem. Mol. Biol., 17, 395–400.

Download references

Acknowledgements

We are grateful to Dr Kevin Kaster (University of Pennsylvania, Philadelphia, PA, USA) for the kind gift of pGRN83 vector; Dr Fu Shan Wang (University of Pennsylvania, Philadelphia, PA, USA) for plasmid pBHG11; and Dr Xinsheng Nan (MRC Human Genetics Unit, Edinburgh, UK) for his helpful discussion. We express our appreciation to Drs Jerry W Shay (University of Texas, Southwestern Medical Center, Dallas, TX, USA), Robert M Kotin (National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA), Carter Van Waes (National Institute on the Deafness and Other Communication Disorders, NIH, Bethesda, MD, USA), and Gang Dong (MetriGenix, Gaithersburg, MD, USA) for their critical readings of the manuscript and helpful suggestions. This research was supported by special funds for Major State Basic Research Program of China (No. G199905396; G2000057001) and the National Natural Science Foundation of China (No. 39930170).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Chen, Z., Chen, Y. et al. Delivering antisense telomerase RNA by a hybrid adenovirus/ adeno-associated virus significantly suppresses the malignant phenotype and enhances cell apoptosis of human breast cancer cells. Oncogene 22, 2405–2416 (2003). https://doi.org/10.1038/sj.onc.1206317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206317

  • Springer Nature Limited

Keywords

This article is cited by

Navigation