Skip to main content
Log in

Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

REF cells transformed by oncogenes E1A and cHa-ras reveal high and constitutive DNA-binding activity of AP-1 factor lacking in c-Fos protein. Consistently, the transcription of c-fos gene has been found to be downregulated. To elucidate the mechanisms of c-fos downregulation in E1A+cHa-ras transformants, we studied the levels of activity of ERK, JNK/SAPK and p38 kinases and phosphorylation state of Elk-1 transcription factor involved in regulation of c-fos gene. Using two approaches, Western blot analysis with phospho-specific antibodies to MAP kinases and in vitro kinase assay with specific substrates, we show here that ectopic expression of E1A and ras oncogenes leads to a sustained activation of ERK and p38 kinases, whereas JNK/SAPK kinase activity is similar to that in non-transformed REF52 cells. Due to sustained activity of the MAP kinase cascades, Elk-1 transcription factor is being phosphorylated even in serum-starved E1A+cHa-ras cells; moreover, serum does not additionally increase phosphorylation of Elk-1, which is predominant TCF protein bound to SRE region of c-fos gene promoter in these cells. Although the amount of ternary complexes SRE/SRF/TCF estimated by EMSA was similar both in serum-starved and serum-stimulated transformed cells, serum addition still caused a modest activation of c-fos gene transcription at the level of 20% to normal REF cells. In attempt to determine how serum caused the stimulatory effect, we found that PD98059, an inhibitor of MEK/ERK kinase cascade, completely suppressed serum-induced c-fos transcription both in REF and E1A+cHa-ras cells, implicating the ERK as primary kinase for c-fos transcription in these cells. In contrast, SB203580, an inhibitor of p38 kinase, augmented noticeably serum-stimulated transcription of c-fos gene in REF cells, implying the involvement of p38 kinase in negative regulation of c-fos. Furthermore, sodium butyrate, an inhibitor of histone deacetylase activity, was capable of activating c-fos transcription both in serum-stimulated and even in serum-starved E1A+cHa-ras cells. Conversely, serum-starved REF cells fail to respond to sodium butyrate treatment by c-fos activation confirming necessity of prior Elk-1 phosphorylation. Taken together, these data suggest that downregulation of c-fos in E1A+cHa-ras cells seems to occur due to a maintenance of a refractory state that arises in normal REF cells after serum-stimulation. The refractory state of c-fos in E1A+cHa-ras cells is likely a consequence of Ras-induced sustained activation of MAPK (ERK) cascade and persistent phosphorylation of TCF (Elk-1) bound to SRE. Combination of these events eventually does contribute to formation of an inactive chromatin structure at c-fos promoter mediated through recruitment of histone deacetylase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abramova MV, Kukushkin AN, Pospelova TV, Svetlikova SB, Pospelov VA . 2002 Mol. Biol. (Moscow) 36: N1

  • Alberts AS, Geneste O, Treisman R . 1998 Cell 92: 475–487

  • Amundadottir LT, Leder P . 1998 Oncogene 16: 737–746

  • Bradford MM . 1976 Analyt. Biochem. 72: 248–254

  • Bulavin DV, Tararova ND, Aksenov ND, Pospelov VA, Pospelova TV . 1999 Oncogene 18: 5611–5619

  • Chomczynski P, Sacchi N . 1987 Analyt. Biochem. 162: 156–159

  • Clarke N, Arenzana N, Hai T, Minden A, Prywes R . 1998 Mol. Cell. Biol. 18: 1065–1073

  • Cowley S, Paterson H, Kemp P, Marshall CJ . 1994 Cell 77: 841–852

  • Criqui-Filipe P, Ducret C, Maira S-M, Wasylyk B . 1999 EMBO J. 18: 3392–3403

  • Cruzalegui FH, Cano E, Treisman R . 1999 Oncogene 18: 7948–7957

  • Ding X-Z, Adrian TE . 2001 Biochem. Biophys. Res. Comm. 282: 447–453

  • Gille H, Downward J . 1999 J. Biol. Chem. 274: 22033–22040

  • Giovane A, Sobieszczuk P, Ayad A, Maira S-M, Wasylyk B . 1997 Mol. Cell. Biol. 17: 5667–5678

  • Graham SM, Oldham SM, Martin CB, Drugan JK, Zohn IE, Campbell S, Der CJ . 1999 Oncogene 18: 2107–2116

  • Grunstein M . 1997 Nature 389: 349–352

  • Hazzalin CA, Cuenda A, Cano E, Cohen P, Mahadevan LS . 1997 Oncogene 15: 2321–2331

  • Herrera RE, Shaw PE, Nordheim A . 1989 Nature 340: 68–70

  • Herrera RE, Nordheim A, Stewart AF . 1997 Chromosoma 106: 284–292

  • Hibi M, Liu A, Smeal T, Minden A, Karin M . 1993 Genes Dev. 7: 2135–2148

  • Hill CS, Wynne J, Treisman R . 1995 Cell 81: 1159–1170

  • Janknecht R, Ernst WH, Pingoud V, Nordheim A . 1993 EMBO J. 12: 5097–5104

  • Kessler R, Zacharova-Ablinger A, Laursen NB, Kalousere M, Klemenz R . 1999 Oncogene 18: 1733–1744

  • Konig H, Ponta H, Rahmsdorf U, Buscher M, Schonthal A, Rahmsdorf HJ, Herrlich P . 1989 EMBO J. 8: 2559–2566

  • Kouzarides T . 1999 Curr. Opin. Genet. Dev. 9: 40–48

  • Lavarone A, Massague J . 1999 Mol. Cell. Biol. 19: 916–922

  • Luo RX, Postigo AA, Dean DC . 1998 Cell 92: 463–473

  • Mechta F, Lallemand D, Pfarr CM, Yaniv M . 1997 Oncogene 14: 837–847

  • Malashicheva AB, Kislyakova TV, Aksenov ND, Osipov KA, Pospelov VA . 2000 Oncogene 19: 3858–3865

  • Morgan A, Dolp O, Reuter CWM . 2001 Blood 97: 1823–1834

  • Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL . 1999 Genes Dev. 13: 2490–2501

  • Nakajima T, Morita K, Tsunoda H, Imajoh-Ohmi S, Tanaka H, Yasuda H, Oda K . 1998 J. Biol. Chem. 273: 20036–20045

  • Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y . 1996 Cell 87: 953–959

  • Pospelova TV, Kukushkin AN, Medvedev AV, Savel'ev AK, Pospelov VA . 1996 Mol. Biol. (Engl. Transl.) 30: 662–672

  • Pospelova TV, Medvedev AV, Kukushkin AN, Svetlikova SB, van der Eb AJ, Dorsman JC, Pospelov VA . 1999 Gene Expression 8: 19–32

  • Raitano AB, Halpern JR, Hambuch TM, Sawyers CL . 1995 Proc. Natl Acad. Sci. USA 92: 11746–11750

  • Rosenberger SF, Finch JS, Gupta A, Bowden GT . 1999a J. Biol. Chem. 274: 1124–1130

  • Rosenberger SF, Gupta A, Bowden GT . 1999b Oncogene 18: 3626–3632

  • Rozek D, Pfeifer GP . 1995 J. Cell. Biochem. 57: 479–487

  • Sasaki S, Lesoon-Wood LA, Dey A, Kuwata T, Weintraub BD, Humphrey G, Yang W-M, Seto E, Yen PM, Howard BH, Ozato K . 1999 EMBO J. 18: 5389–5398

  • Schonthal A, Tsukitani Y, Feramisco JR . 1991 Oncogene 6: 423–430

  • Schreiber E, Matthias P, Muller MM, Schaffner W . 1989 Nucl. Acids Res. 17: 6419–

  • Silberman S, Janulis M, Schultz RM . 1997 J. Biol. Chem. 272: 5927–5935

  • Singh RP, Dhawan P, Golden C, Kapoor GS, Mehta KD . 1999 J. Biol. Chem. 274: 19593–19600

  • Treisman R . 1994 Curr. Opin. Genet. Dev. 4: 96–101

  • Treisman R . 1996 Curr. Opin. Cell. Biol. 8: 205–215

  • van Dam H, Huguer S, Kooistra K, Baguet J, Vial E, van der Eb AJ, Herrlich P, Angel P, Castellazzi M . 1998 Genes Dev. 12: 1227–1239

  • Westermarck J, Li S-P, Kallunki T, Han J, Kahari V-M . 2001 Mol. Cell. Biol. 21: 2373–2383

  • Whitmarsh AJ, Shore P, Sharrocks AD, Davis RJ . 1995 Science 269: 403–407

  • Whitmarsh AJ, Yang S-H, Su MS, Sharrocks AD, Davis RJ . 1997 Mol. Cell. Biol. 17: 2360–2375

  • Wang Y, Prywes R . 2000 Oncogene 19: 1379–1385

  • Watts RG, Huang C, Young MR, Li JJ, Dong Z, Pennie WD, Colburn NH . 1998 Oncogene 17: 3493–3498

  • Westwick JK, Cox AD, Der CJ, Cobb MH, Hibi M, Karin M, Brenner DA . 1994 Proc. Natl. Acad. Sci. USA 91: 6030–6034

  • Xie W, Herschman HR . 1995 J. Biol. Chem. 270: 27622–27628

  • Yang S-H, Whitmarsh AJ, Davis RJ, Sharrocks AD . 1998 EMBO J. 17: 1740–1749

  • Yang S-H, Shore P, Willingham N, Lakey JH, Sharrocks AD . 1999 EMBO J. 20: 5666–5674

  • Yang S-H, Vickers E, Brehm A, Kouzarides T, Sharrocks AD . 2001 Mol. Cell. Biol. 21: 2802–2814

  • Yates PR, Atherton GT, Deed RW, Norton JD, Sharrocks AD . 1999 EMBO J. 18: 968–976

  • Yoshida M, Horinouchi S, Beppu T . 1995 BioEssay 17: 423–430

  • Yu CL, Prochownik EV, Imperiale MJ, Jove R . 1993 Mol. Cell. Biol. 13: 2011–2019

  • Zhang H, Shi X, Hampong M, Blanis L, Pelech S . 2001 J. Biol. Chem. 276: 6905–6908

  • Zinck R, Hipskind RA, Pingoud V, Nordheim A . 1993 EMBO J. 12: 2377–2387

Download references

Acknowledgements

The authors wish to thank Alexander Erkin for BL21 strain of E. coli, Bohdan Wasylyk for polyclonal antisera to Elk-1, Sap-1, Net, Net-b proteins, Roger Davis for plasmids pGEX-Elk-C and pGEX-Sap1-C, K.-L. Guan for plasmid pcDNA3-HA-Elk1, Andy Sharrocks for kind gift of GST-Jun, GST-ATF2 and GST-MEF2A constructs. We acknowledge Vadim Ivanov for his help in preparation of polyclonal antibodies to Elk-1 and Sap-1. This work was supported by grants of the Russian Foundation for Basic Research (RFBR) 00-04-49389 (VA Pospelov), 01-04-49422 (TV Pospelova), and INTAS grant 99–1036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V Pospelova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukushkin, A., Abramova, M., Svetlikova, S. et al. Downregulation of c-fos gene transcription in cells transformed by E1A and cHa-ras oncogenes: a role of sustained activation of MAP/ERK kinase cascade and of inactive chromatin structure at c-fos promoter. Oncogene 21, 719–730 (2002). https://doi.org/10.1038/sj.onc.1205118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205118

  • Springer Nature Limited

Keywords

This article is cited by

Navigation