Skip to main content

Advertisement

Log in

Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Membrane-associated binding sites for estrogen may mediate rapid effects of estradiol-17β that contribute to proliferation of human breast cancers. After controlled homogenization and fractionation of MCF-7 breast cancer cells, the bulk of specific estradiol binding is found in nuclear fractions. However, a significant portion of specific, high-affinity estradiol-17β binding-sites are also enriched in plasma membranes. These estradiol binding-sites co-purify with 5′-nucleotidase, a plasma membrane-marker enzyme, and are free from major contamination by cytosol or nuclei. Electrophoresis of membrane fractions allowed detection of a primary 67-kDa protein and a secondary 46-kDa protein recognized by estradiol-17β and by a monoclonal antibody directed to the ligand-binding domain of the nuclear form of estrogen receptor. Estrogen-induced growth of MCF-7 breast cancer cells in vitro was blocked by treatment with the antibody to estrogen receptor and correlated closely with acute hormonal activation of mitogen-activated protein kinase and Akt kinase signaling. Estrogen-promoted growth of human breast cancer xenografts in nude mice was also significantly reduced by treatment in vivo with the estrogen receptor antibody. Thus, membrane-associated forms of estrogen receptor may play a role in promoting intracellular signaling for hormone-mediated proliferation and survival of breast cancers and offer a new target for antitumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ahmad S, Singh N, Glazer RI . 1999 Biochem. Pharmacol. 58: 425–430

  • An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC . 2001 J. Biol. Chem. 276: 17808–17814

  • Aronica S, Katzenellenbogen B . 1993 Mol. Endocrinol. 7: 743–752

  • Aronica S, Kraus W, Katzenellenbogen B . 1994 Proc. Natl. Acad. Sci. USA 91: 8517–8521

  • Bergeron JJ, Searle N, Khan MN, Posner BI . 1986 Biochemistry 25: 1756–1764

  • Berthois Y, Pourreau-Schneider N, Gandilhon P, Mittre H, Tubiana N, Martin PM . 1986 J. Steroid Biochem. 25: 963–972

  • Chambliss K, Yuhanna I, Mineo C, Liu P, German Z, Sherman T, Mendelsohn M, Anderson R, Shaul P . 2000 Circ. Res. 87: e44–e52

  • Chen F, Watson CS, Gametchu B . 1999 J. Cell. Biochem. 74: 430–446

  • Chun TY, Gregg D, Sarkar DK, Gorski J . 1998 Proc. Natl. Acad. Sci. USA 95: 2325–2330

  • Couse JF, Curtis SW, Washburn TF, Lindzey J, Golding TS, Lubahn DB, Smithies O, Korach KS . 1995 Mol. Endocrinol. 9: 1441–1454

  • Evans RM . 1988 Science 240: 889–895

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM . 1998 J. Biol. Chem. 273: 18623–18632

  • Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, Sonntag-Buck V, Gannon F . 2000 EMBO J. 19: 4688–4700

  • Fuqua SA, Schiff R, Parra I, Friedrichs WE, Su J-L, McKee DD, Slentz-Kesler K, Moore LB, Willson TM, Moore JT . 1999 Cancer Res. 59: 5425–5428

  • Germain PS, Metezeau P, Tiefenauer LX, Kiefer H, Ratinaud MH, Habrioux G . 1993 Anticancer Res. 13: 2347–2353

  • Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P . 1986 Nature 320: 134–139

  • Gu Q, Korach KS, Moss RL . 1999 Endocrinol. 140: 660–666

  • Hawkins MB, Thornton JW, Crews D, Skipper J, Dotte A, Thomas P . 2000 Proc. Natl. Acad. Sci. USA 97: 10751–10756

  • Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, Sessa WC, Bender JR . 2000 Circ. Res. 87: 677–682

  • Henderson BE, Ross R, Bernstein L . 1988 Cancer Res. 48: 246–253

  • Improta-Brears T, Whorton AR, Codazzi F, York JD, Meyer T, McDonnell DP . 1999 Proc. Natl. Acad. Sci. USA 96: 4686–4691

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Daniel Metzger, Pierre Chambon . 1995 Science 270: 1491–1494

  • Kim H, Lee J, Jeong J, Bae S, Lee H, Jo I . 1999 Biochem. Biophys. Res. Commun. 263: 257–262

  • Levin ER . 1999 Trends Endocrinol. Metab. 10: 374–377

  • Luconi M, Muratori M, Forti G, Baldi E . 1999 J. Clin. Endocrinol. Metab. 84: 1670–1678

  • McKenna NJ, O'Malley BW . 2000 Nat. Med. 6: 960–962

  • Mendelsohn ME, Karas RH . 1999 New Engl. J. Med. 340: 1801–1811

  • Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E, Auricchio F . 1996 EMBO J. 15: 1292–1300

  • Monje P, Boland R . 1999 Mol. Cell. Endocrinol. 147: 75–84

  • Murdoch FE, Gorski J . 1991 Mol. Cell. Endocrinol. 78: C103–C108

  • Nemere I, Farach-Carson MC . 1998 Biochem. Biophys. Res. Commun. 248: 443–449

  • Nenci I, Marchetti E, Marzola A, Fabris G . 1981 J. Steroid Biochem. 14: 1139–1146

  • Norfleet AM, Clarke CH, Gametchu B, Watson CS . 2000 FASEB J. 14: 157–165

  • Pappas TC, Gametchu B, Watson CS . 1995 FASEB J. 9: 404–410

  • Pietras RJ, Szego CM . 1975 Nature 253: 357–359

  • Pietras RJ, Szego CM . 1977 Nature 265: 69–72

  • Pietras RJ, Szego CM . 1979 J. Steroid Biochem. 11: 1471–1483

  • Pietras RJ, Szego CM . 1980 Biochem. J. 191: 743–760

  • Pietras RJ, Szego CM . 1984 Biochem. Biophys. Res. Commun. 123: 84–91

  • Pietras RJ, Fendly BM, Chazin VR, Pegram M, Howell SB, Slamon DJ . 1994 Oncogene 9: 1829–1838

  • Pietras RJ, Arboleda J, Reese D, Wongvipat N, Pegram M, Ramos L, Gorman C, Parker MG, Sliwkowski M, Slamon DJ . 1995 Oncogene 10: 2435–2446

  • Ramirez VD, Zheng J . 1996 Front Neuroendocrinol. 17: 402–439

  • Razandi M, Pedram A, Greene GL, Levin ER . 1999 Mol. Endocrinol. 13: 307–319

  • Razandi M, Pedram A, Levin ER . 2000 Mol. Endocrinol. 14: 1434–1447

  • Register TC, Adams MR . 1998 J. Steroid Biochem. Mol. Biol. 64: 187–191

  • Russell KS, Haynes MP, Sinha D, Clerisme E, Bender JR . 2000 Proc. Natl. Acad. Sci. USA 97: 5930–5935

  • Sica V, Nola E, Parikh I, Puca GA, Cuatrecasas P . 1973 Nat. New Biol. 244: 36–39

  • Simoncini T, Hafezi-Moghadam A, Brazil D, Ley K, Chin W, Liao JK . 2000 Nature 407: 538–541

  • Stevis PE, Deecher DC, Suhadolnik L, Mallis LM, Frail DE . 1999 Endocrinology 140: 5455–5458

  • Szego CM, Davis JS . 1967 Proc. Natl. Acad. Sci. USA 58: 1711–1718

  • Szego CM, Pietras RJ . 1984 Int. Rev. Cytol. 88: 1–302

  • Watson CS, Gametchu B . 1999 Proc. Soc. Exp. Biol. Med. 220: 9–19

  • Watters JJ, Campbell JS, Cunningham MJ, Krebs EG, Dorsa DM . 1997 Endocrinology 138: 4030–4033

  • Weiler PJ, Wiebe JP . 2000 Biochem. Biophys. Res. Commun. 272: 731–737

  • Weisz A, Bresciani F . 1993 Crit. Rev. Oncol. 4: 361–388

  • Welshons WV, Grady LH, Judy BM, Jordan VC, Preziosi DE . 1993 Mol. Cell. Endocrinol. 94: 183–194

  • Zyzek E, Dufy-Barbe L, Dufy B, Vincent JD . 1981 Biochem. Biophys. Res. Commun. 102: 1151–1157

Download references

Acknowledgements

We acknowledge Dr E Montecino and C-P Ng for assistance with flow cytometry. Dr M Parker generously provided ERE-CAT reporter gene constructs, and Dr H Garban and Dr CM Szego offered helpful discussions and comments. Support from US Army DAMD17-001-0177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J Pietras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez, D., Pietras, R. Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells. Oncogene 20, 5420–5430 (2001). https://doi.org/10.1038/sj.onc.1204729

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1204729

  • Springer Nature Limited

Keywords

This article is cited by

Navigation