Skip to main content
Log in

The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R

  • Original Paper
  • Published:
Oncogene Submit manuscript

Abstract

Tek/Tie2 is an endothelial cell-specific receptor tyrosine kinase that has been shown to play a role in vascular development of the mouse. Targeted mutagenesis of both Tek and its agonistic ligand, Angiopoietin-1, result in embryonic lethality, demonstrating that the signal transduction pathway(s) mediated by this receptor are crucial for normal embryonic development. In an attempt to identify downstream signaling partners of the Tek receptor, we have used the yeast two-hybrid system to identify phosphotyrosine-dependent interactions. Using this approach, we have identified a novel docking molecule called Dok-R, which has sequence and structural homology to p62dok and IRS-3. Mapping of the phosphotyrosine-interaction domain within Dok-R shows that Dok-R interacts with Tek through a PTB domain. Dok-R is coexpressed with Tek in a number of endothelial cell lines. We show that coexpression of Dok-R with activated Tek results in tyrosine phosphorylation of Dok-R and that rasGAP and Nck coimmunoprecipitate with phosphorylated Dok-R. Furthermore, Dok-R is constitutively bound to Crk presumably through the proline rich tail of Dok-R. The cloning of Dok-R represents the first downstream substrate of the activated Tek receptor, and suggests that Tek can signal through a multitude of pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, N., Dumont, D. The Tek/Tie2 receptor signals through a novel Dok-related docking protein, Dok-R. Oncogene 17, 1097–1108 (1998). https://doi.org/10.1038/sj.onc.1202115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202115

  • Springer Nature Limited

Keywords

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Navigation