Skip to main content

Advertisement

Log in

Lymphoma

Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin's disease cells to conventional chemotherapeutics

  • Original Manuscript
  • Published:
Leukemia Submit manuscript

Abstract

SGN-30, a monoclonal antibody with activity against CD30+ malignancies, is currently in phase II clinical evaluation for treatment of Hodgkin's disease (HD) and anaplastic large cell lymphoma. The mechanisms underlying SGN-30's antitumor activity were investigated using cDNA array of L540 cells. SGN-30 treatment activated NF-κB and modulation of several messages including the growth regulator p21WAF1/CIP1 (p21) and cellular adhesion marker ICAM-1. p21 protein levels increased coincident with growth arrest and Annexin V/PI staining in treated HD cells. To determine if SGN-30-induced growth arrest would sensitize tumor cells to chemotherapeutics used against HD, L540cy and L428 cells were exposed to SGN-30 in combination with a panel of cytotoxic agents and resultant interactions quantified by the Combination Effects Method. Interactions between SGN-30 and all cytotoxic agents examined were additive or better. These in vitro data translated to increased efficacy of SGN-30 and bleomycin against L540cy tumor xenografts. In addition to direct cell killing, SGN-30 affects growth arrest and drug sensitization through growth regulating and proapoptotic machinery. Importantly, these data suggest that SGN-30 can enhance the efficacy of standard chemotherapies used to treat patients with CD30+ malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, Bonin FV, Kapp U et al. Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 2001; 97: 250–255.

    Article  CAS  PubMed  Google Scholar 

  2. Leroy X, Augusto D, Leteurtre E, Gosselin B . CD30 and CD117 (c-kit) used in combination are useful for distinguishing embryonal carcinoma from seminoma. J Histochem Cytochem 2002; 50: 283–285.

    Article  CAS  PubMed  Google Scholar 

  3. Gruss H-J, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG . Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 1994; 83: 2045–2056.

    CAS  PubMed  Google Scholar 

  4. Pinto A, Aldinucci D, Gloghini A, Zagonel V, Degan M, Improta S et al. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin's disease cell line. Blood 1996; 88: 3299–3305.

    CAS  PubMed  Google Scholar 

  5. Wahl AF, Klussman K, Thompson JD, Chen JH, Francisco LV, Risdon G et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res 2002; 62: 3736–3742.

    CAS  PubMed  Google Scholar 

  6. Barth S, Huhn M, Matthey B, Tawadros S, Schnell R, Schinkothe T et al. Ki-4(scFv)-ETA′, a new recombinant anti-CD30 immunotoxin with highly specific cytotoxic activity against disseminated Hodgkin tumors in SCID mice. Blood 2000; 95: 3909–3914.

    CAS  PubMed  Google Scholar 

  7. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 2003; 102: 1458–1465.

    Article  CAS  PubMed  Google Scholar 

  8. Horie R, Watanabe T, Ito K, Morisita Y, Watanabe M, Ishida T et al. Cytoplasmic aggregation of TRAF2 and TRAF5 proteins in the Hodgkin–Reed–Sternberg cells. Am J Pathol 2002; 160: 1647–1654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M et al. Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 1999; 18: 2241–2251.

    Article  CAS  PubMed  Google Scholar 

  10. Emmanouilides C, Jazirehi A, Bonavida B . Rituximab-mediated sensitization of B-non-Hodgkin's lymphoma (NHL) to cytotoxicity induced by paclitaxel, gemcitabine and vinorelbine. Cancer Biother Radiopharmaceut 2002; 17: 621–630.

    Article  CAS  Google Scholar 

  11. Pegram MD, Slamon DJ . Combination therapy with Trastuzumab (Herceptin) and cisplatin for chemoresistant metastatic breast cancer: evidence for receptor-enhanced chemosensitivity. Semin Oncol 1999; 12 (4, Suppl. 12): 89–95.

    Google Scholar 

  12. Vose J, Link B, Grossbard M, Czuczman M, Grillo-Lopez A, Gilman P et al. Phase II study of rituximab in combination with CHOP chemotherapy in patients with previously untreated, aggressive non-Hodgkin's lymphoma. J Clin Oncol 2001; 19: 3439.

    Article  Google Scholar 

  13. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 1997; 90: 2188–2195.

    CAS  PubMed  Google Scholar 

  14. Pegram MD, Lipton A, Hayes DF, Weber BL, Baselga JM, Tripathy D et al. Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 1998; 16: 2659–2671.

    Article  CAS  PubMed  Google Scholar 

  15. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T . Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 2003; 22: 2034–2044.

    Article  CAS  PubMed  Google Scholar 

  16. Chou T, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regulat 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  17. Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R, Slamon DJ . Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 2004; 96: 739–749.

    Article  CAS  PubMed  Google Scholar 

  18. Mathas S, Lietz A, Janz M, Hinz M, Jundt F, Scheidereit C et al. Inhibition of NF-kappaB essentially contributes to arsenic-induced apoptosis. Blood 2003; 102: 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  19. Roebuck KA, Finnegan A . Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol 1999; 66: 876–888.

    Article  CAS  PubMed  Google Scholar 

  20. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 2002; 196: 605–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang J, Yang X, Zhou P, Han H . Cloning of mouse genomic ribosomal protein L6 gene and analysis of its promoter. Biochim Biophys Acta 2002; 1576: 219–224.

    Article  CAS  PubMed  Google Scholar 

  22. Chou T-C, Motzer RJ, Tong Y, Bosl GJ . Computerized quantitation of synergism and antagonism of taxol, topotecan, and cisplatin against human teratocarcinoma cell growth: a rational approach to clinical protocol design. J Natl Cancer Inst 1994; 86: 1517–1524.

    Article  CAS  PubMed  Google Scholar 

  23. Engert A, Wolf J, Diehl V . Treatment of advanced Hodgkin's lymphoma: standard and experimental approaches. Semin Hematol 1999; 36: 282–289.

    CAS  PubMed  Google Scholar 

  24. Hertzberg M, Crombie C, Benson W, Taper J, Gottlieb D, Bradstock K . Outpatient-based ifosfamide, carboplatin and etoposide (ICE) chemotherapy in transplant-eligible patients with non-Hodgkin's and Hodgkin's disease. Ann Oncol 2003; 14 (Suppl. 1): 11–16.

    Article  Google Scholar 

  25. Carabasi M, Bartlett N, Younes A, Miller DM, Schliebner SD, Siegall CB et al. Pharmacokinetics, safety and tolerability of SGN-30, a chimeric monoclonal antibody (mAb), administered as a single dose to patients with CD30+ hematologic malignancies. Proc Am Soc Clin Oncol 2003; 22: 180.

    Google Scholar 

  26. Hubinger G, Muller E, Scheffrahn I, Schneider C, Hildt E, Singer BB et al. CD30-mediated cell cycle arrest associated with induced expression of p21CIP1/WAF1 in the anaplastic large cell lymphoma cell line Karpas 299. Oncogene 2001; 20: 590–598.

    Article  CAS  PubMed  Google Scholar 

  27. Schneider C, Stohr D, Merz H, Hubinger G . Signal transduction in anaplastic large cell lymphoma cells (ALCL) mediated by the tumor necrosis factor receptor CD30. Leukemia Lymphoma 2004; 45: 1009–1015.

    Article  CAS  PubMed  Google Scholar 

  28. Troester MA, Hoadley KA, Sorlie T, Herbert B-S, Borresen-Dale A-L, Lonning PE et al. Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 2004; 64: 4218–4226.

    Article  CAS  PubMed  Google Scholar 

  29. Huo JX, Metz SA, Li GD . p53-independent induction of p21(waf1/cip1) contributes to the activation of caspases in GTP-depletion-induced apoptosis of insulin-secreting cells. Cell Death Differ 2004; 11: 99–109.

    Article  CAS  PubMed  Google Scholar 

  30. Jakus J, Yeudall WA . Growth inhibitory concentrations of EGF induce p21 (WAF1/Cip1) and alter cell cycle control in squamous carcinoma cells. Oncogene 1996; 12: 2369–2376.

    CAS  PubMed  Google Scholar 

  31. Li Y, Dowbenko D, Lasky LA . AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 2002; 277: 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia JF, Camacho FI, Morente M, Fraga M, Montalban C, Alvaro T et al. Hodgkin and Reed–Sternberg cells harbor alterations in the major tumor suppressor pathways and cell-cycle checkpoints: analysis using tissue microarrays. Blood 2003; 101: 681–689.

    Article  CAS  PubMed  Google Scholar 

  33. Chiarle R, Podda A, Prolla G, Podack ER, Thorbecke GJ, Inghirami G . CD30 overexpression enhances negative selection in the thymus and mediates programmed cell death via a Bcl-2-sensitive pathway. J Immunol 1999; 163: 194–205.

    CAS  PubMed  Google Scholar 

  34. Askew DS, Ashmun RA, Simmons BC, Cleveland JL . Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 1991; 6: 1915–1922.

    CAS  PubMed  Google Scholar 

  35. Wang H, Oliver P, Zhang Z, Agrawal S, Zhang R . Chemosensitization and radiosensitization of human cancer by antisense anti-MDM2 oligonucleotides: in vitro and in vivo activities and mechanisms. Ann N Y Acad Sci 2003; 1002: 217–235.

    Article  CAS  PubMed  Google Scholar 

  36. Heuck F, Ellermann J, Borchmann P, Rothe A, Hansen H, Engert A et al. Combination of the human anti-CD30 antibody 5F11 with cytostatic drugs enhances its antitumor activity against Hodgkin and anaplastic large cell lymphoma cell lines. J Immunother 2004; 27: 347–353.

    Article  CAS  PubMed  Google Scholar 

  37. Borchmann P, Treml JF, Hansen H, Gottstein C, Schnell R, Staak O et al. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 2003; 102: 3737–3742.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A F Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerveny, C., Law, CL., McCormick, R. et al. Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin's disease cells to conventional chemotherapeutics. Leukemia 19, 1648–1655 (2005). https://doi.org/10.1038/sj.leu.2403884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403884

  • Springer Nature Limited

Keywords

This article is cited by

Navigation