Skip to main content

Advertisement

Log in

Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo

  • Original Article
  • Published:
Gene Therapy Submit manuscript

Abstract

Pharmacological control is a desirable safety feature of oncolytic adenoviruses (oAdV). It has recently been shown that oAdV replication may be controlled by drug-dependent transcriptional regulation of E1A expression. Here, we present a novel concept that relies on tamoxifen-dependent regulation of E1A activity through functional linkage to the mutated hormone-binding domain of the murine estrogen receptor (Mer). Four different E1A-Mer chimeras (ME, EM, EΔNLSM, MEM) were constructed and inserted into the adenoviral genome under control of a lung-specific surfactant protein B promoter. The highest degree of regulation in vitro was seen for the corresponding oAdVs Ad.EΔNLSM and Ad.MEM, which exhibited an up to 100-fold higher oAdV replication in the presence as compared with the absence of 4-OH-tamoxifen. Moreover, destruction of nontarget cells was six- and 13-fold reduced for Ad.EΔNLSM and Ad.MEM, respectively, as compared with Ad.E. Further investigations supported tamoxifen-dependent regulation of Ad.EΔNLSM and Ad.MEM in vivo. Induction of Ad.EΔNLSM inhibited growth of H441 lung tumors as efficient as a control oAdV expressing E1A. EΔNLSM and the MEM chimeras can be easily inserted into a single vector genome, which extends their application to existing oAdVs and strongly facilitates in vivo application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 2
Figure 1
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

4-OH-Tam:

4-OH-tamoxifen

Mer:

mutated hormone-binding domain of murine estrogen receptor

oAdV:

oncolytic adenovirus

HBD:

hormone-binding domain

MOI:

multiplicity of infection

PFU:

plaque-forming units

Dox:

doxycycline

TRE:

tetracycline response element.

References

  1. Bauerschmitz GJ, Barker SD, Hemminki A . Adenoviral gene therapy for cancer: from vectors to targeted and replication competent agents (review). Int J Oncol 2002; 21: 1161–1174.

    CAS  PubMed  Google Scholar 

  2. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  Google Scholar 

  3. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  Google Scholar 

  4. Nettelbeck DM, Rivera AA, Balague C, Alemany R, Curiel DT . Novel oncolytic adenoviruses targeted to melanoma: specific viral replication and cytolysis by expression of E1A mutants from the tyrosinase enhancer/promoter. Cancer Res 2002; 62: 4663–4670.

    CAS  PubMed  Google Scholar 

  5. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  Google Scholar 

  6. Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75: 3314–3324.

    Article  CAS  Google Scholar 

  7. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  Google Scholar 

  8. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  Google Scholar 

  9. Ramachandra M, Rahman A, Zou A, Vaillancourt M, Howe JA, Antelman D et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat Biotechnol 2001; 19: 1035–1041.

    Article  CAS  Google Scholar 

  10. Hernandez-Alcoceba R, Pihalja M, Wicha MS, Clarke MF . A novel, conditionally replicative adenovirus for the treatment of breast cancer that allows controlled replication of E1a-deleted adenoviral vectors. Hum Gene Ther 2000; 11: 2009–2024.

    Article  CAS  Google Scholar 

  11. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR . Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  12. Ohashi M, Kanai F, Tateishi K, Taniguchi H, Marignani PA, Yoshida Y et al. Target gene therapy for alpha-fetoprotein-producing hepatocellular carcinoma by E1B55k-attenuated adenovirus. Biochem Biophys Res Commun 2001; 282: 529–535.

    Article  CAS  Google Scholar 

  13. Peter I, Graf C, Dummer R, Schaffner W, Greber UF, Hemmi S . A novel attenuated replication-competent adenovirus for melanoma therapy. Gene Therapy 2003; 10: 530–539.

    Article  CAS  Google Scholar 

  14. Jakubczak JL, Ryan P, Gorziglia M, Clarke L, Hawkins LK, Hay C et al. An oncolytic adenovirus selective for retinoblastoma tumor suppressor protein pathway-defective tumors: dependence on E1A, the E2F-1 promoter, and viral replication for selectivity and efficacy. Cancer Res 2003; 63: 1490–1499.

    CAS  PubMed  Google Scholar 

  15. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR . The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59: 4200–4203.

    CAS  PubMed  Google Scholar 

  16. Post DE, Van Meir EG . A novel hypoxia-inducible factor (HIF) activated oncolytic adenovirus for cancer therapy. Oncogene 2003; 22: 2065–2072.

    Article  CAS  Google Scholar 

  17. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL . Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Therapy 2003; 10: 1241–1247.

    Article  CAS  Google Scholar 

  18. Reid T, Galanis E, Abbruzzese J, Sze D, Wein LM, Andrews J et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  19. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 2003; 14: 425–433.

    Article  CAS  Google Scholar 

  20. Avvakumov N, Mymryk JS . New tools for the construction of replication-competent adenoviral vectors with altered E1A regulation. J Virol Methods 2002; 103: 41–49.

    Article  CAS  Google Scholar 

  21. Chong H, Ruchatz A, Clackson T, Rivera VM, Vile RG . A system for small-molecule control of conditionally replication-competent adenoviral vectors. Mol Ther 2002; 5: 95–203.

    Article  Google Scholar 

  22. Hurtado Picó A, Wang X, Sipo I, Siemetzki U, Eberle J, Poller W et al. Viral and nonviral factors causing nonspecific replication of tumor- and tissue-specific promoter-dependent oncolytic adenoviruses. Mol Ther 2005; 11: 563–577.

    Article  Google Scholar 

  23. Fechner H, Wang X, Srour M, Siemetzki U, Seltmann H, Sutter AP et al. A novel tetracycline-controlled transactivator-transrepressor system enables external control of oncolytic adenovirus replication. Gene Therapy 2003; 10: 1680–1690.

    Article  CAS  Google Scholar 

  24. Hsieh CL, Yang L, Miao L, Yeung F, Kao C, Yang H et al. A novel targeting modality to enhance adenoviral replication by vitamin D3 in androgen-independent human prostate cancer cells and tumors. Cancer Res 2002; 62: 3084–3092.

    CAS  PubMed  Google Scholar 

  25. Picard D, Kumar V, Chambon P, Yamamoto KR . Signal transduction by steroid hormones: nuclear localization is differentially regulated in estrogen and glucocorticoid receptors. Cell Regul 1990; 1: 291–299.

    Article  CAS  Google Scholar 

  26. Picard D, Salser SJ, Yamamoto KR . A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 1988; 54: 1073–1080.

    Article  CAS  Google Scholar 

  27. Hanstein B, Djahansouzi S, Dall P, Beckmann MW, Bender HG . Insights into the molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. Eur J Endocrinol 2004; 150: 243–255.

    Article  CAS  Google Scholar 

  28. Pratt WB, Toft DO . Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 1997; 18: 306–360.

    CAS  PubMed  Google Scholar 

  29. Laios I, Journe F, Laurent G, Nonclercq D, Toillon RA, Seo HS et al. Mechanisms governing the accumulation of estrogen receptor alpha in MCF-7 breast cancer cells treated with hydroxytamoxifen and related antiestrogens. J Steroid Biochem Mol Biol 2003; 87: 207–221.

    Article  CAS  Google Scholar 

  30. Spitkovsky D, Steiner P, Lukas J, Lees E, Pagano M, Schulze A et al. Modulation of cyclin gene expression by adenovirus E1A in a cell line with E1A-dependent conditional proliferation. J Virol 1994; 68: 2206–2214.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hope TJ, Huang XJ, McDonald D, Parslow TG . Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci USA 1990; 87: 7787–7791.

    Article  CAS  Google Scholar 

  32. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI . A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 1995; 23: 1686–1690.

    Article  CAS  Google Scholar 

  33. Burk O, Klempnauer KH . Estrogen-dependent alterations in differentiation state of myeloid cells caused by a v-myb/estrogen receptor fusion protein. EMBO J 1991; 10: 3713–3719.

    Article  CAS  Google Scholar 

  34. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG . Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 1993; 7: 232–240.

    CAS  PubMed  Google Scholar 

  35. Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P . Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA 1996; 93: 10887–10890.

    Article  CAS  Google Scholar 

  36. Sohal DS, Nghiem M, Crackower MA, Witt SA, Kimball TR, Tymitz KM et al. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 2001; 89: 20–25.

    Article  CAS  Google Scholar 

  37. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH, Chambon P et al. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res 1999; 27: 4324–4327.

    Article  CAS  Google Scholar 

  38. Verrou C, Zhang Y, Zurn C, Schamel WW, Reth M . Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol Chem 1999; 380: 1435–1438.

    Article  CAS  Google Scholar 

  39. Zhang Y, Riesterer C, Ayrall AM, Sablitzky F, Littlewood TD, Reth M . Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res 1996; 24: 543–548.

    Article  CAS  Google Scholar 

  40. Senkus-Konefka E, Konefka T, Jassem J . The effects of tamoxifen on the female genital tract. Cancer Treat Rev 2004; 30: 291–301.

    Article  CAS  Google Scholar 

  41. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  Google Scholar 

  42. Urlinger S, Baron U, Thellmann M, Hasan MT, Bujard H, Hillen W . Exploring the sequence space for tetracycline-dependent transcriptional activators: novel mutations yield expanded range and sensitivity. Proc Natl Acad Sci USA 2000; 97: 7963–7968.

    Article  CAS  Google Scholar 

  43. Moran E, Mathews MB . Multiple functional domains in the adenovirus E1A gene. Cell 1987; 48: 177–178.

    Article  CAS  Google Scholar 

  44. Sassone-Corsi P, Borrelli E . Promoter trans-activation of protooncogenes c-fos and c-myc, but not c-Ha-ras, by products of adenovirus early region 1A. Proc Natl Acad Sci USA 1987; 84: 6430–6433.

    Article  CAS  Google Scholar 

  45. Rhoades KL, Golub SH, Economou JS . The adenoviral transcription factor, E1A 13S, trans-activates the human tumor necrosis factor-alpha promoter. Virus Res 1996; 40: 65–74.

    Article  CAS  Google Scholar 

  46. Krippl B, Ferguson B, Jones N, Rosenberg M, Westphal H . Mapping of functional domains in adenovirus E1A proteins. Proc Natl Acad Sci USA 1985; 82: 7480–7484.

    Article  CAS  Google Scholar 

  47. Geoerger B, van Beusechem VW, Opolon P, Morizet J, Laudani L, Lecluse Y et al. Expression of p53, or targeting towards EGFR, enhances the oncolytic potency of conditionally replicative adenovirus against neuroblastoma. J Gene Med 2005; 7: 584–594.

    Article  CAS  Google Scholar 

  48. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    Article  CAS  Google Scholar 

  49. Freundlieb S, Schirra-Muller C, Bujard H . A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J Gene Med 1999; 1: 4–12.

    Article  CAS  Google Scholar 

  50. Duque PM, Alonso C, Sanchez-Prieto R, Quintanilla M, Ramon S, Cajal S . Antitumoral effect of E1B defective adenoviruses in human malignant cells. Gene Therapy 1998; 5: 286–287.

    Article  CAS  Google Scholar 

  51. Mandlekar S, Kong AN . Mechanisms of tamoxifen-induced apoptosis. Apoptosis 2001; 6: 469–477.

    Article  CAS  Google Scholar 

  52. Jordan VC . Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 2004; 5: 207–213.

    Article  CAS  Google Scholar 

  53. Grill HJ, Pollow K . Pharmacokinetics of droloxifene and its metabolites in breast cancer patients. Am J Clin Oncol 1991; 14 (Suppl. 2): S21–S29.

    Article  Google Scholar 

  54. Eppenberger U, Wosikowski K, Kung W . Pharmacologic and biologic properties of droloxifene, a new antiestrogen. Am J Clin Oncol 1991; 14 (Suppl. 2): S5–S14.

    Article  Google Scholar 

  55. Yan C, Sever Z, Whitsett JA . Upstream enhancer activity in the human surfactant protein B gene is mediated by thyroid transcription factor 1. J Biol Chem 1995; 270: 24852–24857.

    Article  CAS  Google Scholar 

  56. Edgell CJ, McDonald CC, Graham JB . Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci USA 1983; 80: 3734–3737.

    Article  CAS  Google Scholar 

  57. Marienfeld U, Haack A, Thalheimer P, Schneider-Rasp S, Brackmann HH, Poller W . ‘Autoreplication’ of the vector genome in recombinant adenoviral vectors with different E1 region deletions and transgenes. Gene Therapy 1999; 6: 1101–1113.

    Article  CAS  Google Scholar 

  58. Fechner H, Wang X, Wang H, Jansen A, Pauschinger M, Scherubl H et al. Trans-complementation of vector replication versus Coxsackie-adenovirus-receptor overexpression to improve transgene expression in poorly permissive cancer cells. Gene Therapy 2000; 7: 1954–1968.

    Article  CAS  Google Scholar 

  59. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie adenovirus receptor and alphav-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Wilhelm Sander-Stiftung to HF (2002.007.1) and by the Cardiovascular Research Center and the Research Committee of Charité – Universitätsmedizin Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fechner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipo, I., Wang, X., Hurtado Picó, A. et al. Tamoxifen-regulated adenoviral E1A chimeras for the control of tumor selective oncolytic adenovirus replication in vitro and in vivo. Gene Ther 13, 173–186 (2006). https://doi.org/10.1038/sj.gt.3302604

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302604

  • Springer Nature Limited

Keywords

This article is cited by

Navigation