Skip to main content

Advertisement

Log in

Cell-Based Therapy

Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells

  • Cell-Based Therapy
  • Published:
Gene Therapy Submit manuscript

Abstract

Activation of cytotoxic T cells without MHC restriction was attempted by expressing single-chain antibodies (scFv) against CD3 on the surface of tumor cells. A chimeric protein consisting of a scFv of mAb 145.2C11, the hinge-CH2-CH3 region of human IgG1, and the transmembrane and cytosolic domains of murine CD80 formed disulfide-linked dimers on the plasma membrane of cells and specifically bound lymphocytes. Anti-CD3 scFv dimers expressed on the cell surface induced CD25 (IL-2 receptor α-chain) expression and proliferation of splenocytes. CT26 tumor cells engineered to express surface scFv dimers (CT26/2C11) also induced potent lymphocyte cytotoxicity with or without addition of exogenous IL-2. Splenocytes activated by CT26/2C11 cells also killed wild-type CT26 cells, indicating that activated splenocytes could kill bystander tumor cells. Immunization of BALB/c mice with irradiated CT26/2C11 cells did not protect against a lethal challenge of CT26 cells, suggesting that systemic immunity was not induced. However, the growth of CT26 tumors containing 50% CT26/2C11 cells was significantly retarded compared with CT26 tumors, whereas CT26/2C11 tumors did not grow in syngeneic mice. These results suggest that expression of anti-CD3 scFv dimers on tumors may form the basis for a novel therapeutic strategy for tumors that exhibit defects in antigen processing or presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Urban JL, Schreiber H . Tumor antigens Annu Rev Immunol 1992 10: 617–644

    Article  CAS  PubMed  Google Scholar 

  2. Wang RF . Tumor antigens discovery: perspectives for cancer therapy Mol Med 1997 3: 716–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldberg AL, Rock KL . Proteolysis, proteasomes and antigen presentation Nature 1992 357: 375–379

    Article  CAS  PubMed  Google Scholar 

  4. Maeurer MJ et al. Tumor escape from immune recognition: loss of HLA-A2 melanoma cell surface expression is associated with a complex rearrangement of the short arm of chromosome 6 Clin Cancer Res 1996 2: 641–652

    CAS  PubMed  Google Scholar 

  5. Blades RA et al. Loss of HLA class I expression in prostate cancer: implications for immunotherapy Urology 1995 46: 681–686

    Article  CAS  PubMed  Google Scholar 

  6. Korkolopoulou P et al. Loss of antigen-presenting molecules (MHC class I and TAP-1) in lung cancer Br J Cancer 1996 73: 148–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nouri AM, Hussain RF, Oliver RT . The frequency of major histocompatibility complex antigen abnormalities in urological tumours and their correction by gene transfection or cytokine stimulation Cancer Gene Ther 1994 1: 119–123

    CAS  PubMed  Google Scholar 

  8. Luboldt HJ, Kubens BS, Rubben H, Grosse Wilde H . Selective loss of human leukocyte antigen class I allele expression in advanced renal cell carcinoma Cancer Res 1996 56: 826–830

    CAS  PubMed  Google Scholar 

  9. Kaklamanis L et al. Loss of major histocompatibility complex-encoded transporter associated with antigen presentation (TAP) in colorectal cancer Am J Pathol 1994 145: 505–509

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Vitale M et al. HLA class I antigen and transporter associated with antigen processing (TAP1 and TAP2) down-regulation in high-grade primary breast carcinoma lesions Cancer Res 1998 58: 737–742

    CAS  PubMed  Google Scholar 

  11. Restifo NP et al. Loss of functional beta 2-microglobulin in metastatic melanomas from five patients receiving immunotherapy J Natl Cancer Inst 1996 88: 100–108

    Article  CAS  PubMed  Google Scholar 

  12. Moritz D, Wels W, Mattern J, Groner B . Cytotoxic T lymphocytes with a grafted recognition specificity for ERBB2-expressing tumor cells Proc Natl Acad Sci USA 1994 91: 4318–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altenschmidt U, Moritz D, Groner B . Specific cytotoxic T lymphocytes in gene therapy J Mol Med 1997 75: 259–266

    Article  CAS  PubMed  Google Scholar 

  14. Altenschmidt U, Klundt E, Groner B . Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression J Immunol 1997 159: 5509–5515

    CAS  PubMed  Google Scholar 

  15. Alvarez Vallina L, Agha Mohammadi S, Hawkins RE, Russell SJ . Pharmacological control of antigen responsiveness in genetically modified T lymphocytes J Immunol 1997 159: 5889–5895

    CAS  PubMed  Google Scholar 

  16. Bolhuis RL, Sturm E, Braakman E . T cell targeting in cancer therapy Cancer Immunol Immunother 1991 34: 1–8

    Article  CAS  PubMed  Google Scholar 

  17. Tibben JG et al. Pharmacokinetics, biodistribution and biological effects of intravenously administered bispecific monoclonal antibody OC/TR F(ab′)2 in ovarian carcinoma patients Int J Cancer 1996 66: 477–483

    Article  CAS  PubMed  Google Scholar 

  18. Weiner LM, Clark JI, Ring DB, Alpaugh RK . Clinical development of 2B1, a bispecific murine monoclonal antibody targeting c-erbB-2 and Fc gamma RIII J Hematother 1995 4: 453–456

    Article  CAS  PubMed  Google Scholar 

  19. Chou WC et al. Expression of chimeric monomer and dimer proteins on the plasma membrane of mammalian cells Biotechnol Bioeng 1999 65: 160–169

    Article  CAS  PubMed  Google Scholar 

  20. Reddy P, Caras I, Krieger M . Effects of O-linked glycosylation on the cell surface expression and stability of decay-accelerating factor, a glycophospholipid-anchored membrane protein J Biol Chem 1989 264: 17329–17336

    CAS  PubMed  Google Scholar 

  21. Kozarsky K, Kingsley D, Krieger M . Use of a mutant cell line to study the kinetics and function of O-linked glycosylation of low density lipoprotein receptors Proc Natl Acad Sci USA 1988 85: 4335–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freeman GJ et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7 J Exp Med 1991 174: 625–631

    Article  CAS  PubMed  Google Scholar 

  23. Minami Y, Kono T, Miyazaki T, Taniguchi T . The IL-2 receptor complex: its structure, function, and target genes Annu Rev Immunol 1993 11: 245–268

    Article  CAS  PubMed  Google Scholar 

  24. Shahinian A et al. Differential T cell costimulatory requirements in CD28-deficient mice Science 1993 261: 609–612

    Article  CAS  PubMed  Google Scholar 

  25. Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S . The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells J Immunol 1990 144: 4579–4586

    CAS  PubMed  Google Scholar 

  26. von Leoprechting A et al. Stimulation of CD40 on immunogenic human malignant melanomas augments their cytotoxic T lymphocyte-mediated lysis and induces apoptosis Cancer Res 1999 59: 1287–1294

    CAS  PubMed  Google Scholar 

  27. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A . T lymphocyte costimulation mediated by reorganization of membrane microdomains Science 1999 283: 680–682

    Article  CAS  PubMed  Google Scholar 

  28. Goldstein JS et al. Purified MHC class I and peptide complexes activate naive CD8+ T cells independently of the CD28/B7 and LFA-1/ICAM-1 costimulatory interactions J Immunol 1998 160: 3180–3187

    CAS  PubMed  Google Scholar 

  29. Viola A, Lanzavecchia A . T cell activation determined by T cell receptor number and tunable thresholds Science 1996 273: 104–106

    Article  CAS  PubMed  Google Scholar 

  30. Harding CV, Unanue ER . Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T cell stimulation Nature 1990 346: 574–576

    Article  CAS  PubMed  Google Scholar 

  31. Kroesen BJ et al. Approaches to lung cancer treatment using the CD3 × EGP-2-directed bispecific monoclonal antibody BIS-1 Cancer Immunol Immunother 1997 45: 203–206

    Article  CAS  PubMed  Google Scholar 

  32. Bolhuis RL et al. Adoptive immunotherapy of ovarian carcinoma with bs-MAb-targeted lymphocytes: a multicenter study Int J Cancer 1992 7: (Suppl) 78–81

    CAS  Google Scholar 

  33. Kroesen BJ et al. Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2 Br J Cancer 1994 70: 652–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Blank Voorthuis CJ et al. Clustered CD3/TCR complexes do not transduce activation signals after bispecific monoclonal antibody-triggered lysis by cytotoxic T lymphocytes via CD3 J Immunol 1993 151: 2904–2914

    CAS  PubMed  Google Scholar 

  35. Wang RF et al. Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and -A33 J Immunol 1998 160: 890–897

    CAS  PubMed  Google Scholar 

  36. Jantzer P, Schendel DJ . Human renal cell carcinoma antigen-specific CTLs: antigen-driven selection and long-term persistence in vivo Cancer Res 1998 58: 3078–3086

    CAS  PubMed  Google Scholar 

  37. Winberg G et al. Surface expression of CD28 single chain Fv for costimulation by tumor cells Immunol Rev 1996 153: 209–223

    Article  CAS  PubMed  Google Scholar 

  38. Hayden MS et al. Costimulation by CD28 sFv expressed on the tumor cell surface or as a soluble bispecific molecule targeted to the L6 carcinoma antigen Tissue Ant 1996 48: 242–254

    Article  CAS  Google Scholar 

  39. Maloney DG et al. Monoclonal anti-idiotype antibodies against the murine B cell lymphoma 38C13: characterization and use as probes for the biology of the tumor in vivo and in vitro Hybridoma 1985 4: 191–209

    Article  CAS  PubMed  Google Scholar 

  40. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection Proc Natl Acad Sci USA 1993 90: 8392–8396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Belnap LP et al. Immunogenicity of chemically induced murine colon cancers Cancer Res 1979 39: 1174–1179

    CAS  PubMed  Google Scholar 

  42. Solar I, Gershoni JM . Linker modification introduces useful molecular instability in a single chain antibody Protein Eng 1995 8: 717–723

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Science Council, Taipei, Taiwan (NSC 88–2318-B001–013-M51) and Academia Sinica.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, KW., Lo, YC. & Roffler, S. Activation of lymphocytes by anti-CD3 single-chain antibody dimers expressed on the plasma membrane of tumor cells. Gene Ther 7, 339–347 (2000). https://doi.org/10.1038/sj.gt.3301080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301080

  • Springer Nature Limited

Keywords

This article is cited by

Navigation