Skip to main content

Advertisement

Log in

Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity

  • Original Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstract

We report here that gene transfer using recombinant adenoviruses encoding interleukin (IL)-18 mutants induces potent antitumor activity in vivo. The precursor form of IL-18 (ProIL-18) is processed by caspase-1 to produce bioactive IL-18, but its cleavage by caspase-3 (CPP32) produces an inactive form. To prepare IL-18 molecules with an effective antitumor activity, a murine IL-18 mutant with the signal sequence of murine granulocyte-macrophage (GM)- colony stimulating factor (CSF) at the 5′-end of mature IL-18 cDNA (GMmIL-18) and human IL-18 mutant with the prepro leader sequence of trypsin (PPT), which is not cleaved by caspase-3 (PPThIL-18CPP32), respectively, were constructed. Adenovirus vectors carrying GMmIL-18 or PPThIL-18CPP32 produced bioactive IL-18. Ad.GMmIL-18 had a more potent antitumor effect than Ad.mProIL-18 encoding immature IL-18 in renal cell adenocarcinoma (Renca) tumor-bearing mice. Tumor-specific cytotoxic T lymphocytes, the induction of Th1 cytokines, and an augmented natural killer (NK) cell activity were detected in Renca tumor-bearing mice treated with Ad.GMmIL-18. An immunohistological analysis revealed that CD4+ and CD8+ T cells abundantly infiltrated into tumors of mice treated with Ad.GMmIL-18. Huh-7 human hepatoma tumor growth in nude mice with a defect of T cell function was significantly inhibited by Ad.PPThIL-18CPP32 compared with Ad.hProIL-18 encoding immature IL-18. Nude mice treated with Ad.PPThIL-18CPP32 contained NK cells with increased cytotoxicity. The results suggest that the release of mature IL-18 in tumors is required for achieving an antitumor effect including tumor-specific cellular immunity and augmented NK cell-mediated cytotoxicity. These optimally designed IL-18 mutants could be useful for improving the antitumor effectiveness of wild-type IL-18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 6
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Okamura H, Tsutsi H, Komatsu T, et al. A novel cytokine that induces IFN-γ production by T cells. Nature. 1995;378:88–91.

    Article  CAS  PubMed  Google Scholar 

  2. Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-γ inducing factor. J Leuk Biol. 1998;63:658–664.

    Article  CAS  Google Scholar 

  3. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H . Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol. 2001;19:423–474.

    Article  CAS  PubMed  Google Scholar 

  4. Golab J . Interleukin 18 — interferon γ inducing factor — a novel player in tumor immunotherapy? Cytokine. 2000;12:332–338.

    Article  CAS  PubMed  Google Scholar 

  5. Stoll S, Muller G, Kurimoto M, et al. Production of IL-18 (IFN-γ-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol. 1997;159:298–302.

    CAS  PubMed  Google Scholar 

  6. Udagawa N, Horwood NJ, Elliott J, et al. Interleukin-18 (interferon-γ-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage-stimulating factor and not via interferon-γ to inhibit osteoclast formation. J Exp Med. 1997;185:1005–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conti B, Jahng JW, Tinti C, et al. Induction of interferon-γ inducing factor in the adrenal cortex. J Biol Chem. 1997;272:2035–2037.

    Article  CAS  PubMed  Google Scholar 

  8. Cho D, Song H, Kim YM, et al. Endogenous interleukin-18 modulates immune escape of murine melanoma cells by regulating the expression of Fas ligand and reactive oxygen intermediates. Cancer Res. 2000;60:2703–2709.

    CAS  PubMed  Google Scholar 

  9. Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN-γ production. Nature. 1997;386:619–623.

    Article  CAS  PubMed  Google Scholar 

  10. Gu Y, Kuida K, Tsutsui H, et al. Activation of interferon-γ inducing factor mediated by interleukin-1β converting enzyme. Science. 1997;275:206–209.

    Article  CAS  PubMed  Google Scholar 

  11. Fantuzzi G, Dinallero CA . Interleukin-18 and interleukin-1 beta: two cytokines substrates for ICE (caspase-1). J Clin Immunol. 1999;19:1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Akita K, Ohtsuki T, Nukada Y, et al. Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. Biol Chem. 1997;272:26595–26603.

    Article  CAS  Google Scholar 

  13. Osaki T, Hashimoto W, Gambotto A, et al. Potent antitumor effects mediated by local expression of the mature form of the interferon-γ inducing factor, interleukin-18 (IL-18). Gene Ther. 1999;6:808–815.

    Article  CAS  PubMed  Google Scholar 

  14. Yoshimura K, Hazama S, Iizuka N, et al. Successful immunogene therapy using colon cancer cells (colon 26) transfected with plasmid vector containing mature interleukin-18 cDNA and the Igκ leader sequence. Cancer Gene Ther. 2001;8:9–16.

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida Y, Tasaki K, Kimurai M, et al. Antitumor effect of human pancreatic cancer cells transduced with cytokine genes which activate Th1 helper T cells. Anticancer Res. 1998;18:333–335.

    CAS  PubMed  Google Scholar 

  16. Weitzman MD, Wilson JM, Eck SL . Adenovirus vectors in cancer gene therapy. In: Sobol RE and Scanlon KJ, eds. The Internet Book of Gene Therapy, Cancer Therapeutics. CJ, USA: Appleton & Lange; 1995: 17–25.

    Google Scholar 

  17. Seong YR, Choi S, Lim JS, et al. Immunogenicity of the E1E2 proteins of hepatitis C virus expressed by recombinant adenoviruses. Vaccine. 2001;19:2955–2964.

    Article  CAS  PubMed  Google Scholar 

  18. Vile RG, Russell SJ, Lemoine NR . Cancer gene therapy: hard lessons and new courses. Gene Ther. 2000;7:2–9.

    Article  CAS  PubMed  Google Scholar 

  19. Oshikawa K, Shi F, Rakhmilevich AL, et al. Synergistic inhibition of tumor growth in a murine mammary adenocarcinoma model by combinational gene therapy using IL-12, pro-IL-18, and IL-1β converting enzyme cDNA. Proc Natl Acad Sci USA. 1999;96:13351–13356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Puren AJ, Fantuzzi G, Dinarello CA . Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1β are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci USA. 1999;96:2256–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perregaux D, McNiff P, Laliberte R, Conklyn M, Gabel CA . ATP acts as an agonist to promote stimulus-induced secretion of IL-1β and IL-18 in human blood. J Immunol. 2000;165:4615–4623.

    Article  CAS  PubMed  Google Scholar 

  22. Mehta VB, Hart J, Wewers MD . ATP-dependent release of interleukin (IL)-1β and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem. 2001;276:3820–3826.

    Article  CAS  PubMed  Google Scholar 

  23. Sanghyeon Kim, Suh KS, Seong YR, et al. Adenovirus-mediated mGM-CSF in vivo gene transfer inhibits tumor growth in a murine Meth A fibrosarcoma model. J Kor Soc Virol. 2000;30:141–150.

    Google Scholar 

  24. Hara S, Nagai H, Miyake H, et al. Secreted type of modified interleukin-18 gene transduction into mouse renal cell carcinoma cells induces systemic tumor immunity. J Urol. 2001;165:2039–2043.

    Article  CAS  PubMed  Google Scholar 

  25. Goto H, Osaki T, Nishino K, et al. Construction and analysis of new vector systems with improved interleukin-18 secretion in a xenogeneic human tumor model. J Immunother. 2002;25:S35–S41.

    Article  CAS  PubMed  Google Scholar 

  26. Nagai H, Hara I, Horikawa T, et al. Gene transfer of secreted-type modified interleukin-18 gene to B16F10 melanoma cells suppresses in vivo tumor growth through inhibition of tumor vessel formation. J Invest Dermatol. 2002;119:541–548.

    Article  CAS  PubMed  Google Scholar 

  27. Pirhonen J, Sareneva T, Julkunen I, Matikainen S . Virus infection induces proteolytic processing of IL-18 in human macrophages via caspase-1 and caspase-3 activation. Eur J Immunol. 2001;31:726–733.

    Article  CAS  PubMed  Google Scholar 

  28. Novick D, Kim SH, Fantuzzi G, et al. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 1999;10:127–136.

    Article  CAS  PubMed  Google Scholar 

  29. Kim SH, Eisenstein M, Reznikov L, et al. Structural requirements of six naturally occurring isoform of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA. 2000;97:1190–1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim SH, Azam T, Yoon DY, et al. Site-specific mutations in the mature form of human IL-18 with enhanced biological activity and decreased neutralization by IL-18 binding protein. Proc Natl Acad Sci USA. 2001;98:3304–3309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ju DW, Yang Y, Tao Q, et al. Interleukin-18 gene transfer increases antitumor effects of suicide gene therapy through efficient induction of anitumor immunity. Gene Therapy. 2000;7:1672–1679.

    Article  CAS  PubMed  Google Scholar 

  32. Sgadari C, Angiolillo AL, Tosato G . Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein-10. Blood. 1996;87:3877–3882.

    CAS  PubMed  Google Scholar 

  33. Coughlin CM, Salhany KE, Wysocka M, et al. Interleukin-12 and interleukin-18 synergistically induces murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 1998;101:1441–1452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao R, Farnebo J, Kurimoto M, Cao Y . Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J. 1999;13:2195–2202.

    Article  CAS  PubMed  Google Scholar 

  35. Yao L, Sgadari C, Furuke K, et al. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood. 1999;93:1612–1621.

    CAS  PubMed  Google Scholar 

  36. Micallef MJ, Tanimoto T, Kohno K, Ikeda M, Kurimoto M . Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res. 1997;57:4557–4563.

    CAS  PubMed  Google Scholar 

  37. Tanaka F, Hashimoto W, Okamura H, et al. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin-18 using dendritic cells and natural killer cells. Cancer Res. 2000;60:4838–4844.

    CAS  PubMed  Google Scholar 

  38. Ju DW, Tao Q, Lou G, et al. Interleukin 18 transfection enhances antitumor immunity induced by dendritic cell-tumor cell conjugates. Cancer Res. 2001;61:3735–3740.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sanghyeon Kim for cloning of IL-18 cDNAs, and JS Lim and KD Kim for immunological assays.

This work was supported by a Grant (FG03-32-02) of 21C Frontier Functional Genome Project from the Ministry of Science and Technology, South Korea.

Kyung-Sun Hwang and Won-Kyung Cho have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Soo Im.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, KS., Cho, WK., Yoo, J. et al. Adenovirus-mediated interleukin-18 mutant in vivo gene transfer inhibits tumor growth through the induction of T cell immunity and activation of natural killer cell cytotoxicity. Cancer Gene Ther 11, 397–407 (2004). https://doi.org/10.1038/sj.cgt.7700711

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700711

  • Springer Nature America, Inc.

Keywords

This article is cited by

Navigation