Skip to main content
Log in

Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer

  • Original Article
  • Published:
Cancer Gene Therapy Submit manuscript

Abstract

Interferon-gamma (IFNγ) and tumor necrosis factor-alpha (TNFα) are potent immunostimulatory cytokines with demonstrated tumoricidal effects in a variety of cancers. With the aim of investigating their ability to generate antitumor immune responses in malignant brain tumors, we describe the use of in situ adenoviral-mediated IFNγ and TNFα gene transfer in glioma-bearing rodents. Survival was prolonged in mice treated with AdmIFNγ or AdTNFα compared to AdLacZ- and saline-inoculated controls, and AdmIFNγ- or AdTNFα-treated animals revealed significantly smaller tumors. These effects were accompanied by significant up-regulation of tumor MHC-I expression in AdmIFNγ-inoculated animals, and of MHC-II in AdTNFα-treated tumors. Significantly enhanced intratumoral infiltration with CD4+ and CD8+ T cells was visible in animals treated with AdmIFNγ, AdTNFα, or a combination of AdmIFNγ and AdTNFα. In addition, AdTNFα therapy down-regulated the expression of endothelial Fas ligand, a cell membrane protein implicated as a contributor to immune privilege in cancer. These findings demonstrate the effectiveness of local IFNγ and TNFα gene transfer as a treatment strategy for glioma and illustrate possible physiological pathways responsible for the therapeutic benefit observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zou JP, Yamamoto N, Fujii T et al. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T-cells Int Immunol 1995 7: 1135–1145

    Article  CAS  PubMed  Google Scholar 

  2. Thomas GR, Chen Z, Enamorado I, Bancroft C, Van Waes C . IL-12– and IL-2–induced tumor regression in a new murine model of oral squamous-cell carcinoma is promoted by expression of the CD80 co-stimulatory molecule and interferon-gamma Int J Cancer 2000 86: 368–374

    Article  CAS  PubMed  Google Scholar 

  3. Leonard JP, Sherman ML, Fisher GL et al. Effects of single-dose interleukin-12 exposure on interleukin-12–associated toxicity and interferon-gamma production Blood 1997 90: 2541–2548

    CAS  PubMed  Google Scholar 

  4. Lauta VM . Pharmacological elements in clinical application of synthetic peptides Fundam Clin Pharmacol 2000 14: 425–442

    Article  CAS  PubMed  Google Scholar 

  5. Mahaley MS Jr, Brooks WH, Roszman TL, Bigner DD, Dudka L, Richardson S . Immunobiology of primary intracranial tumors: Part 1. Studies of the cellular and humoral general immune competence of brain-tumor patients J Neurosurg 1977 46: 467–476

    Article  PubMed  Google Scholar 

  6. Roszman TL, Brooks WH, Elliott LH . Inhibition of lymphocyte responsiveness by a glial tumor cell–derived suppressive factor J Neurosurg 1987 67: 874–879

    Article  CAS  PubMed  Google Scholar 

  7. Morford LA, Elliott LH, Carlson SL, Brooks WH, Roszman TL . T cell receptor–mediated signaling is defective in T cells obtained from patients with primary intracranial tumors J Immunol 1997 159: 4415–4425

    CAS  PubMed  Google Scholar 

  8. Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH . Intratumoral LAK cell and interleukin-2 therapy of human gliomas J Neurosurg 1989 70: 175–182

    Article  CAS  PubMed  Google Scholar 

  9. Merchant RE, McVicar DW, Merchant LH, Young HF . Treatment of recurrent malignant glioma by repeated intracerebral injections of human recombinant interleukin-2 alone or in combination with systemic interferon-alpha. Results of a phase I clinical trial J Neuro-Oncol 1992 12: 75–83

    Article  CAS  Google Scholar 

  10. Yu JS, Wei MX, Chiocca EA, Martuza RL, Tepper RI . Treatment of glioma by engineered interleukin 4–secreting cells Cancer Res 1993 53: 3125–3128

    CAS  PubMed  Google Scholar 

  11. Okada H, Villa L, Attanucci J et al. Cytokine gene therapy of gliomas: effective induction of therapeutic immunity to intracranial tumors by peripheral immunization with interleukin-4 transduced glioma cells Gene Ther 2001 8: 1157–1166

    Article  CAS  PubMed  Google Scholar 

  12. Jean WC, Spellman SR, Wallenfriedman MA, Hall WA, Low WC . Interleukin-12–based immunotherapy against rat 9L glioma Neurosurgery 1998 42: 850–856

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Ehtesham M, Samoto K et al. In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic immunity in glioma Cancer Gene Ther 2002 9: 9–15

    Article  CAS  PubMed  Google Scholar 

  14. Saiki I, Sato K, Yoo YC et al. Inhibition of tumor-induced angiogenesis by the administration of recombinant interferon-gamma followed by a synthetic lipid-A subunit analogue (GLA-60) Int J Cancer 1992 51: 641–645

    Article  CAS  PubMed  Google Scholar 

  15. Sato N, Fukuda K, Nariuchi H, Sagara N . Tumor necrosis factor inhibiting angiogenesis in vitro J Natl Cancer Inst 1987 79: 1383–1391

    CAS  PubMed  Google Scholar 

  16. Old LJ . Tumor necrosis factor Science 1985 230: 630–634

    Article  CAS  PubMed  Google Scholar 

  17. Polunovsky VA, Wendt CH, Ingbar DH, Peterson MS, Bitterman PB . Induction of endothelial cell apoptosis by TNF alpha: modulation by inhibitors of protein synthesis Exp Cell Res 1994 214: 584–594

    Article  CAS  PubMed  Google Scholar 

  18. Seder RA, Paul WE . Acquisition of lymphokine-producing phenotype by CD4+ T cells Annu Rev Immunol 1994 12: 635–673

    Article  CAS  PubMed  Google Scholar 

  19. Sidky YA, Borden EC . Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses Cancer Res 1987 47: 5155–5161

    CAS  PubMed  Google Scholar 

  20. Dufour A, Corsini E, Gelati M et al. Modulation of ICAM-1, VCAM-1 and HLA-DR by cytokines and steroids on HUVECs and human brain endothelial cells J Neurol Sci 1998 157: 117–121

    Article  CAS  PubMed  Google Scholar 

  21. Krakauer T, Vilcek J, Oppenheim JJ . Proinflammatory cytokines, TNF and IL-1 families, chemokines, TGF-β, and others In: Paul WE, ed Fundamental Immunology Philadelphia, PA: Lippincott-Raven 1999 775–812

    Google Scholar 

  22. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B . An endotoxin-induced serum factor that causes necrosis of tumors Proc Natl Acad Sci USA 1975 72: 3666–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akbasak A, Oldfield EH, Saris SC . Expression and modulation of major histocompatibility antigens on murine primary brain tumor in vitro J Neurosurg 1991 75: 922–929

    Article  CAS  PubMed  Google Scholar 

  24. Saleh M, Jonas NK, Wiegmans A, Stylli SS . The treatment of established intracranial tumors by in situ retroviral IFN-gamma transfer Gene Ther 2000 7: 1715–1724

    Article  CAS  PubMed  Google Scholar 

  25. Fathallah-Shaykh HM, Zhao LJ, Kafrouni AI, Smith GM, Forman J . Gene transfer of IFN-gamma into established brain tumors represses growth by antiangiogenesis J Immunol 2000 164: 217–222

    Article  CAS  PubMed  Google Scholar 

  26. Niranjan A, Moriuchi S, Lunsford LD et al. Effective treatment of experimental glioblastoma by HSV vector–mediated TNF alpha and HSV-tk gene transfer in combination with radiosurgery and ganciclovir administration Mol Ther 2000 2: 114–120

    Article  CAS  PubMed  Google Scholar 

  27. Walsh K, Sata M . Is extravasation a Fas-regulated process? Mol Med Today 1999 5: 61–67

    Article  CAS  PubMed  Google Scholar 

  28. Schaack J, Langer S, Guo X . Efficient selection of recombinant adenoviruses by vectors that express beta-galactosidase J Virol 1995 69: 3920–3923

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Hashizume K, Samoto K et al. Repeated, short-term ischemia augments bradykinin-mediated opening of the blood–tumor barrier in rats with RG2 glioma Neurol Res 2001 23: 631–640

    Article  CAS  PubMed  Google Scholar 

  30. Samoto K, Ehtesham M, Perng GC et al. A herpes simplex virus type 1 mutant with γ34.5 and LAT deletions effectively oncolyses human U87 glioblastomas in nude mice Neurosurgery 2002 3: 599–605

    Google Scholar 

  31. Carpentier AF, Xie J, Mokhtari K, Delattre JY . Successful treatment of intracranial gliomas in rat by oligodeoxynucleotides containing CpG motifs Clin Cancer Res 2000 6: 2469–2473

    CAS  PubMed  Google Scholar 

  32. Black KL, Chen K, Becker DP, Merrill JE . Inflammatory leukocytes associated with increased immunosuppression by glioblastoma J Neurosurg 1992 77: 120–126

    Article  CAS  PubMed  Google Scholar 

  33. Roussel E, Gingras MC, Grimm EA, Bruner JM, Moser RP . Predominance of a type 2 intratumoural immune response in fresh tumour-infiltrating lymphocytes from human gliomas Clin Exp Immunol 1996 105: 344–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maxwell M, Galanopoulos T, Neville-Golden J, Antoniades HN . Effect of the expression of transforming growth factor-beta 2 in primary human glioblastomas on immunosuppression and loss of immune surveillance J Neurosurg 1992 76: 799–804

    Article  CAS  PubMed  Google Scholar 

  35. Zou JP, Morford LA, Chougnet C et al. Human glioma–induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers J Immunol 1999 162: 4882–4892

    CAS  PubMed  Google Scholar 

  36. Saas P, Walker PR, Hahne M et al. Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 1997 99: 1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benedetti S, Bruzzone MG, Pollo B et al. Eradication of rat malignant gliomas by retroviral-mediated, in vivo delivery of the interleukin 4 gene Cancer Res 1999 59: 645–652

    CAS  PubMed  Google Scholar 

  38. Baher AG, Andres ML, Folz-Holbeck J, Cao JD, Gridley DS . A model using radiation and plasmid-mediated tumor necrosis factor-alpha gene therapy for treatment of glioblastomas Anticancer Res 1999 19: 2917–2924

    CAS  PubMed  Google Scholar 

  39. Staba MJ, Mauceri HJ, Kufe DW, Hallahan DE, Weichselbaum RR . Adenoviral TNF-alpha gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft Gene Ther 1998 5: 293–300

    Article  CAS  PubMed  Google Scholar 

  40. Rabinowich H, Reichert TE, Kashii Y, Gastman BR, Bell MC, Whiteside TL . Lymphocyte apoptosis induced by Fas ligand–expressing ovarian carcinoma cells. Implications for altered expression of T cell receptor in tumor-associated lymphocytes J Clin Invest 1998 101: 2579–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hahne M, Rimoldi D, Schroter M et al. Melanoma cell expression of Fas (Apo-1/CD95) ligand: implications for tumor immune escape Science 1996 274: 1363–1366

    Article  CAS  PubMed  Google Scholar 

  42. O'Connell J, O'Sullivan GC, Collins JK, Shanahan F . The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand J Exp Med 184: 1075–1082

    Article  CAS  Google Scholar 

  43. O'Connell J, Bennett MW, O'Sullivan GC, O'Callaghan J, Collins JK, Shanahan F . Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege Clin Diagn Lab Immunol 1999 6: 457–463

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bennett MW, O'Connell J, O'Sullivan GC et al. The Fas counterattack in vivo: apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma J Immunol 1998 160: 5669–5675

    CAS  PubMed  Google Scholar 

  45. Sata M, Walsh K . TNF alpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation Nat Med 1998 4: 415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by NIH Grant NS02232 to John S Yu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehtesham, M., Samoto, K., Kabos, P. et al. Treatment of intracranial glioma with in situ interferon-gamma and tumor necrosis factor-alpha gene transfer. Cancer Gene Ther 9, 925–934 (2002). https://doi.org/10.1038/sj.cgt.7700516

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700516

  • Springer Nature America, Inc.

Keywords

This article is cited by

Navigation