Skip to main content
Log in

Post-Transplant Events

Elevated serum insulin-like growth factor binding protein-2 is associated with a high relapse risk after hematopoietic stem cell transplantation in childhood AML

  • Original Article
  • Published:
Bone Marrow Transplantation Submit manuscript

Abstract

Insulin-like growth factor binding protein (IGFBP)-2 has mitogenic effects in normal and neoplastic cells. The purpose of this study is to examine the diagnostic and prognostic significance of elevated IGFBP-2 levels in children with AML after hematopoietic stem cell transplantation (HSCT) at relapse and continuous complete remission (CCR). In 27 children with AML (mean age 13.6±5.3 years; patients in remission n=15 with relapse n=12) serum parameters of IGFBP-2, IGFBP-3, IGF-I and IGF-II were analyzed up to 18 months after HSCT by RIA. AML-patients with evidence of relapse demonstrated a continuous increase of IGFBP-2 levels during the follow-up. At day 100 after HSCT, IGFBP-2 concentrations were significantly higher in patients with relapse than in children without relapse (7.4±4.0 standard deviation score (SDS) vs 3.9±1.7 SDS; P=0.01). Serum IGFBP-2 was identified as an independent factor for the prediction of relapse. Furthermore, the probability of relapse-free survival (RFS) in patients with IGFBP-2 >4.5 SDS at day 100 after HSCT was 31% compared to patients with IGFBP-2 <4.5 SDS was 72% (P=0.004). Patients with IGFBP-2 concentration up to 4.5 SDS more likely developed a relapse and had a poorer outcome. Identification of these patients allows a more individualized and aggressive adjuvant treatment and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Creuzig U, Ritter J, Zimmermann M, Reinhardt D, Hermann J, Berthold F et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol 2001; 19: 2705–2713.

    Article  Google Scholar 

  2. Ortega JJ, Diaz de Heredia C, Olive T, Bastida P, Llort A, Armadan L et al. Allogeneic and autologous bone marrow transplantation after consolidation therapy in high-risk acute myeloid leukemia in children. Towards a risk-oriented therapy. Haematologica 2003; 88: 290–299.

    PubMed  Google Scholar 

  3. Woods WG, Neudorf S, Gold S, Sanders J, Buckley JD, Barnard DR et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood 2001; 97: 56–62.

    Article  CAS  Google Scholar 

  4. Creutzig U, Ritter J, Zimmermann M, Schellong G . Does cranial irritation reduce the risk for bone marrow relapse in acute myelogenous leukemia? Unexpected results of childhood. AML Study-87. J Clin Oncol 1993; 11: 279–286.

    Article  CAS  Google Scholar 

  5. Loeb DM, Arceci RJ . What is the optimal therapy for childhood AML? Oncology (Huntington) 2002; 16: 1057–1066; discussion 1066, 1068–1070.

    Google Scholar 

  6. Lanvers C, Reinhardt D, Dubbers A . Pharmacology of all-trans-retinoic acid in children with acute promyelocytic leukemia. Med Pediatr Oncol 2003; 40: 293–301.

    Article  Google Scholar 

  7. Klein B, Tarte K, Jourdan M, Mathouk K, Moreaux J, Joudan E et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol 2003; 78: 106–113.

    Article  CAS  Google Scholar 

  8. Busund LT, Richardsen E, Busund R, Ukkonem T, Bjornsen T, Busch C et al. Significant expression of IGFBP2 in breast cancer compared with benign lesions. J Clin Pathol 2005; 58: 361–366.

    Article  CAS  Google Scholar 

  9. Kim HS, Ingermann AR, Tsubaki J, Twigg SM, Walker GF, Oh Y . Insulin-like growth factor-binding protein 3 induces caspase-dependent apoptosis through a death receptor-mediated pathway in MCF-7 human breast cancer cells. Cancer Res 2004; 64: 2229–2237.

    Article  CAS  Google Scholar 

  10. Dupont J, Pierre A, Froment P, Moreau C . The insulin-like growth factor axis in cell cycle progression. Horm Metab Res 2003; 35: 740–750.

    Article  CAS  Google Scholar 

  11. Drop SL, Schuller AG, Lindenbergh-Kortleve DJ, Groffen C, Brinkman A, Zwarthoff EC . Structural aspects of the IGFBP family. Growth Regul 1992; 2: 69–79.

    CAS  PubMed  Google Scholar 

  12. Duan C, Xu Q . Roles of insulin-like growth factor (IGF) binding proteins in regulating IGF actions. Gen Comp Endocrinol 2005; 142: 44–52.

    Article  CAS  Google Scholar 

  13. Yu H, Nicar MR, Shi R, Berkeltt J, Nam R, Trachtenberg J et al. Levels of insulin-like growth factor-I (IGF-I) and IGF-binding proteins -2 and -3 in serial postoperative serum samples and risk of prostate cancer recurrence. Urology 2001; 57: 471–475.

    Article  CAS  Google Scholar 

  14. Elmlinger MW, Sanatani MS, Bell M, Dannecker GE, Ranke MB . Elevated insulin-like growth factor (IGF) binding protein (IGFBP)-2 and IGFBP-4 expression of leukemic T-cells is affected by autocrine/paracrine IGF-II action but not by IGF type I receptor expression. Eur J Endocrinol 1998; 138: 337–343.

    Article  CAS  Google Scholar 

  15. Lee EJ, Mircean C, Shmulevich I, Wang H, Liu J, Niemisto A et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer 2005; 4: 7.

    Article  Google Scholar 

  16. Dawczynski K, Kauf E, Zintl F . Changes of serum factors (IGF-I,-II and IGFBP-2,-3) prior to and after stem cell transplantation in children with acute leukemia. Bone Marrow Transplant 2003; 32: 411–415.

    Article  CAS  Google Scholar 

  17. Blum WF, Breier BH . Radioimmunoassays for IGFs and IGFBPs. Growth Regul 1994; 4 (Suppl 1): 11–19.

    CAS  PubMed  Google Scholar 

  18. Blum WF, Horn N, Kratzsch J, Jorgensen JO, Juul A, Teale D et al. Clinical studies of IGFBP-2 by radioimmunoassay. Growth Regul 1993; 3: 100–104.

    CAS  Google Scholar 

  19. Frystyk J, Ivarsen P, Stoving RK, Dall R, Bek T, Hagen C et al. Determination of free insulin-like growth factor-I in human serum: comparison of ultrafiltration and direct immunoradiometric assay. Growth Horm IGF Res 2001; 11: 117–127.

    Article  CAS  Google Scholar 

  20. Cicognani A, Cacciari E, Pession A, Passini A, De Jasio R, Gennai M et al. Insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 (IGFBP-3) concentration compared to stimulated growth hormone (GH) in the evaluation of children treated for malignancy. J Pediatr Endocrinol Metab 1999; 12: 629–638.

    Article  CAS  Google Scholar 

  21. Dorbyski WR . The role of allogeneic transplantation in high–risk acute myelogenous leukemia. Leukemia 2004; 18: 1565–1568.

    Article  Google Scholar 

  22. Knechtli CJ, Goulden NJ, Hancock JH, Harris EL, Garland RJ, Jones CG et al. Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol 1998; 102: 860–871.

    Article  CAS  Google Scholar 

  23. Sakatani T, Shimazaki C, Hirai H, Okano A, Hatsuse M, Okamoto A et al. Early relapse after high-dose chemotherapy rescued by tumor-free autologous peripheral blood stem cells in acute lymphoblastic leukemia: importance of monitoring of WT1 mRNA quantitatively. Leuk Lymphoma 2001; 42: 225–229.

    Article  CAS  Google Scholar 

  24. Dolmen G . Detection of minimal residual disease. Adv Cancer Res 2001; 82: 133–185.

    Article  Google Scholar 

  25. Ho PJ, Baxter RC . Insulin-like growth factor-binding protein-2 in patients with prostate carcinoma and benign prostatic hyperplasia. Clin Endocrinol 1997; 46: 333–342.

    Article  CAS  Google Scholar 

  26. Boulle N, Logie A, Gicquel C, Perin L, Le Bouc Y . Increased levels of insulin-like growth factor II (IGF-II) and IGF-binding protein-2 are associated with malignancy in sporadic adrenocortical tumors. J Clin Endocrinol Metab 1998; 83: 1713–1720.

    CAS  PubMed  Google Scholar 

  27. Petridou E, Skalkidou A, Dessypris N, Moustaki M, Mantzoros C, Spanos E et al. Insulin-like growth factor binding protein-3 predicts survival from acute childhood leukemia. Oncology 2001; 60: 252–257.

    Article  CAS  Google Scholar 

  28. Batron-Hay S, Boyle F, Ferrier A, Scott C . Elevated serum insulin-like growth factor binding protein-2 as a prognostic marker in patients with ovarian cancer. Clin Cancer Res 2004; 10: 1796–1806.

    Article  Google Scholar 

  29. Vorwerk P, Wex H, Hohmann B, Mohnike K, Schmidt U, Mittler U . Expression of components of the IGF signalling in childhood acute lymphoblastic leukaemia. Mol Pathol 2002; 55: 40–45.

    Article  CAS  Google Scholar 

  30. Cianfarani S, Rossi P . Neuroblastoma and insulin-like growth factor system. New insights and clinical perspectives. Eur J Pediatr 1997; 156: 256–261.

    Article  CAS  Google Scholar 

  31. Menouny M, Binox M, Babajako S . IGFBP-2 expression in a human cell line is associated with increased IGFBP-3 proteolysis, decrease IGFBP-1 expression and increased tumorgenicity. Int J Cancer 1998; 77: 874–879.

    Article  CAS  Google Scholar 

  32. Hettmer S, Dannecker L, Foell J, Elmlinger MW, Dannecker GE . Effects of insulin-like growth factors and insulin-like growth factor binding protein-2 on the in vitro proliferation of peripheral blood mononuclear cells. Hum Immunol 2005; 66: 95–103.

    Article  CAS  Google Scholar 

  33. Elmlinger MW, Sanatani MS, Bell M, Dannecker GE, Ranke MB . Elevated insulin-like growth factor (IGF) binding protein (IGFBP)-2 and IGFBp-4 expression of leukemic T-cells is affected by autocrine/paracrine IGF-II action but not by IGF type I receptor expression. Eur J Endocrinol 1998; 138: 337–343.

    Article  CAS  Google Scholar 

  34. Vorwerk P, Mohnike K, Wex H, Rohl FW, Zimmermann M, Blum WF et al. Insulin-like growth factor binding protein-2 at diagnosis of childhood acute lymphoblastic leukaemia and the prediction of relapse risk. J Clin Endocrinol Metab 2005; 90: 3022–3027.

    Article  CAS  Google Scholar 

  35. Bugie-Barhim S, Min HK, Oh Y . Potential of proteomics towards the investigation of the IGF-independent actions of IGFBP-3. Expert Rev Proteom 2005; 2: 71–86.

    Article  Google Scholar 

  36. Schutt BS, Langkamp M, Rauschnabel U, Ranke MB, Elmlinger MW . Integrin-mediated action of insulin-like growth factor binding protein-2 in tumor cells. J Mol Endocrinol 2004; 32: 859–868.

    Article  CAS  Google Scholar 

  37. Taya S, Inagaki N, Sengiku H, Makino H, Iwanatsu A, Urakawa I et al. Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol 2001; 155: 809–820.

    Article  CAS  Google Scholar 

  38. Munker R, Salat C, Pihusch R, Diem H, Hiller E, Glass J et al. Levels of insulin-like growth factor after stem cell transplantation. Eur J Med Res 2001; 6: 181–184.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Dawczynski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawczynski, K., Kauf, E., Schlenvoigt, D. et al. Elevated serum insulin-like growth factor binding protein-2 is associated with a high relapse risk after hematopoietic stem cell transplantation in childhood AML. Bone Marrow Transplant 37, 589–594 (2006). https://doi.org/10.1038/sj.bmt.1705281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1705281

  • Springer Nature Limited

Keywords

This article is cited by

Navigation