Skip to main content

Advertisement

Log in

Rethinking river water temperature in a changing, human-dominated world

  • Comment
  • Published:

From Nature Water

View current issue Submit your manuscript

Climate change and other human activities are modifying river water temperature globally. A more holistic understanding of river temperature dynamics in an integrated climate–land–hydrology–human framework is urgently needed for sustainable river management and adaptation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Examples of how humans influence maximum river temperature during summer.

References

  1. Ouellet, V. et al. Sci. Total Environ. 736, 139679 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Sutadian, A. D., Muttil, N., Yilmaz, A. G. & Perera, B. J. C. Environ. Monit. Assess. 188, 58 (2016).

    Article  PubMed  Google Scholar 

  3. Murdoch, P. S., Baron, J. S. & Miller, T. L. J. Am. Water Resour. Assoc. 36, 347–366 (2000).

    Article  CAS  Google Scholar 

  4. Hannah, D. M. & Garner, G. Prog Phys Geogr. 39, 68–92 (2015).

    Article  Google Scholar 

  5. Abbott, B. W. et al. Nat. Geosci. 12, 533–540 (2019).

    Article  CAS  Google Scholar 

  6. Grill, G. et al. Nature 569, 215–221 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Hermanson, L. et al. Bull. Am. Meteorol. Soc. 103, E1117–E1129 (2022).

    Article  Google Scholar 

  8. Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E. & Nobilis, F. Hydrol. Process. 22, 902–918 (2008).

    Article  Google Scholar 

  9. Hester, E. T. & Doyle, M. W. J. Am. Water Resour. Assoc. 47, 571–587 (2011).

    Article  Google Scholar 

  10. Schliemann, S. A., Grevstad, N. & Brazeau, R. H. Hydrol. Process 35, e14001 (2021).

    Article  Google Scholar 

  11. Jackson, F. L., Fryer, R. J., Hannah, D. M., Millar, C. P. & Malcolm, I. A. Sci. Total Environ. 612, 1543–1558 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. O’Sullivan, A. M., Devito, K. J. & Curry, R. A. Catena 177, 70–83 (2019).

    Article  Google Scholar 

  13. Chang, H. & Psaris, M. Sci. Total Environ. 461, 587–600 (2013).

    Article  PubMed  Google Scholar 

  14. Hester, E. T. & Bauman, K. S. J. Am. Water Resour. Assoc. 49, 328–342 (2013).

    Article  Google Scholar 

  15. Croghan, D., Van Loon, A. F., Sadler, J. P., Bradley, C. & Hannah, D. M. Hydrol. Process. 33, 144–159 (2018).

    Article  Google Scholar 

  16. Levia, D. F. et al. Nat. Geosci. 13, 656–658 (2020).

    Article  CAS  Google Scholar 

  17. Nelson, K. C. & Palmer, M. A. J. Am. Water Resour. Assoc 43, 440–452 (2007).

    Article  Google Scholar 

  18. Heggenes, J. et al. River Res. Appl. 37, 743–765 (2021).

    Article  Google Scholar 

  19. Menberg, K., Blum, P., Kurylyk, B. L. & Bayer, P. Hydrol. Earth Syst. Sci. 18, 4453–4466 (2014).

    Article  Google Scholar 

  20. Tissen, C., Benz, S. A., Menberg, K., Bayer, P. & Blum, P. Environ. Res. Lett. 14, 104012 (2019).

    Article  CAS  Google Scholar 

  21. Hannah, D. M. et al. Hydrol. Process. 36, e14525 (2022).

    Article  Google Scholar 

  22. Carothers, C. et al. Ecol. Soc. https://doi.org/10.5751/ES-11972-260116 (2021).

  23. Dugdale, S. J., Hannah, D. M. & Malcolm, I. A. Earth Sci. Rev. 175, 97–113 (2017).

    Article  Google Scholar 

  24. Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Water Resour. Res. 55, 2760–2778 (2019).

    Article  Google Scholar 

  25. Tavares, M. H. et al. Remote Sens. Environ. 241, 11172 (2020).

    Article  Google Scholar 

  26. Dugdale, S. J., Klaus, J. & Hannah, D. M. Water Resour. Res. 58, e2021WR031168 (2022).

    Article  Google Scholar 

  27. Mao, F. et al. Environ. Sci. Technol. 54, 9145–9158 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Hannah, D. M. et al. Hydrol. Process. 25, 1191–1200 (2011).

    Article  Google Scholar 

  29. Do, H. X., Gudmundsson, L., Leonard, M. & Westra, S. Earth Syst. Sci. Data 10, 765–785 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This comment is the outcome of a workshop administered under the University of Birmingham’s Institute of Advanced Studies (IAS) in 2022. D.L. Ficklin is deeply grateful for receiving financial and logistical support during his visit under the University of Birmingham’s IAS Vanguard Fellowship. D.M. Hannah notes the contribution of this research to the activities of the UNESCO Chair in Water Sciences and a Royal Society Wolfson Fellowship (RSWF\R3\183025). N. Wanders acknowledges funding from NWO 016.Veni.181.049 and the National Geographic World Water Map project. T. Markus from Utrecht University designed graphically Fig. 1; this original diagram is based on concepts from all authors. The views expressed in this paper are those of the authors and do not necessarily represent the views of the Environment Agency or other institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Hannah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ficklin, D.L., Hannah, D.M., Wanders, N. et al. Rethinking river water temperature in a changing, human-dominated world. Nat Water 1, 125–128 (2023). https://doi.org/10.1038/s44221-023-00027-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00027-2

  • Springer Nature Limited

This article is cited by

Navigation