Skip to main content
Log in

Best practices for electrochemical reduction of carbon dioxide

  • Comment
  • Published:

From Nature Sustainability

View current issue Submit your manuscript

Carbon capture, utilization and storage, a fundamental process to a sustainable future, relies on a suite of technologies among which electrochemical reduction of carbon dioxide is essential. Here, we discuss the issues faced when reporting performance of this technology and recommend how to move forward at both materials and device levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Schematic illustration of the basic configurations of an electrochemical cell for a CO2 reduction experiment.

References

  1. Appel, A. M. et al. Chem. Rev. 113, 6621–6658 (2013).

    Article  CAS  Google Scholar 

  2. Fan, L. et al. Sci. Adv. 6, eaay3111 (2020).

    Article  CAS  Google Scholar 

  3. Overa, S., Ko, B. H., Zhao, Y. & Jiao, F. Acc. Chem. Res. 55, 638–648 (2022).

    Article  CAS  Google Scholar 

  4. Lu, Q. & Jiao, F. Nano Energy 29, 439–456 (2016).

    Article  CAS  Google Scholar 

  5. Nitopi, S. et al. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  Google Scholar 

  6. Ross, M. B. et al. Nat. Catal. 2, 648–658 (2019).

    Article  CAS  Google Scholar 

  7. Lu, Q. et al. Nat. Commun. 5, 3242 (2014).

    Article  Google Scholar 

  8. Clark, E. L. et al. ACS Catal. 8, 6560–6570 (2018).

    Article  CAS  Google Scholar 

  9. Chen, Y. et al. Nat. Catal. 3, 1055–1061 (2020).

    Article  CAS  Google Scholar 

  10. Costentin, C. ACS Catal. 11, 5678–5687 (2021).

    Article  CAS  Google Scholar 

  11. Costentin, C., Drouet, S., Robert, M. & Savéant, J. M. J. Am. Chem. Soc. 134, 11235–11242 (2012).

  12. Larrazábal, G. O., Ma, M. & Seger, B. Acc. Mater. Res. 2, 220–229 (2021).

    Article  Google Scholar 

  13. Rabinowitz, J. A. & Kanan, M. W. Nat. Commun. 11, 5231 (2020).

    Article  CAS  Google Scholar 

  14. Ma, M. et al. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  15. Ma, M., Zheng, Z., Yan, W., Hu, C. & Seger, B. ACS Energy Lett. 7, 2595–2601 (2022).

    Article  CAS  Google Scholar 

  16. Garg, S., Rodriguez, C. A. G., Rufford, T. E., Varcoe, J. R. & Seger, B. Energy Environ. Sci. 15, 4440–4469 (2022).

    Article  CAS  Google Scholar 

  17. Nwabara, U. O. et al. Towards accelerated durability testing protocols for CO2 electrolysis. J. Mater. Chem. A 8, 22557–22571 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. A. G. Rodriguez at Technical University of Denmark for creating the figure. B.S. acknowledges funding from the Villum Foundation V-SUSTAIN grant 9455 to the Villum Center for the Science of Sustainable Fuels and Chemicals and funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 85144 (SELECT-CO2). M.R. acknowledges the Institut Universitaire de France (IUF) for partial financial support. F.J. thanks the financial support by the US National Science Foundation (award no. 2119435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seger, B., Robert, M. & Jiao, F. Best practices for electrochemical reduction of carbon dioxide. Nat Sustain 6, 236–238 (2023). https://doi.org/10.1038/s41893-022-01034-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-01034-z

  • Springer Nature Limited

This article is cited by

Navigation