Skip to main content

Advertisement

Log in

Chromatin engineering offers an opportunity to advance epigenetic cancer therapy

  • Comment
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Misregulation of gene cohorts, which is caused by aberrant chromatin features and is observed in various cancers, has spurred the development and use of epigenetic anti-cancer drugs. Here, we argue that, in addition to small-molecule inhibitors that target chromatin regulators, synthetic reader-effectors that are recruited to abnormal chromatin features have the potential to correct gene misregulation in epigenetic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Epigenetic interventions target chromatin and coordinate the expression of multiple genes.
Fig. 2: Comparison of loss-of-function versus gain-of-function approaches to perturb chromatin in cancer cells.
Fig. 3: Targeting cohorts of misregulated genes in cancer cells with synthetic reader-effectors.

References

  1. Lungu, C., Pinter, S., Broche, J., Rathert, P. & Jeltsch, A. Nat. Commun. 8, 649 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tekel, S. J., Barrett, C., Vargas, D. & Haynes, K. A. Biochemistry 57, 4707–4716 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Delachat, A. M.-F. et al. Cell Chem. Biol. 25, 51–56.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez, O. F., Mendonca, A., Carneiro, A. D. & Yuan, C. ACS Sens. 2, 426–435 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Bracken, A. P. & Helin, K. Nat. Rev. Cancer 9, 773–784 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Jene-Sanz, A. et al. Mol. Cell. Biol. 33, 3951–3961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dawson, M. A. & Kouzarides, T. Cell 150, 12–27 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Tekel, S. J. & Haynes, K. A. Nucleic Acids Res. 45, 7555–7570 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, H. et al. Oncotarget 5, 587–598 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Ahuja, N., Sharma, A. R. & Baylin, S. B. Annu. Rev. Med. 67, 73–89 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahara, S. et al. Proc. Natl Acad. Sci. USA 113, E3735–E3744 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McGarvey, K. M. et al. Cancer Res. 66, 3541–3549 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Kagey, J. D., Kapoor-Vazirani, P., McCabe, M. T., Powell, D. R. & Vertino, P. M. Mol. Cancer Res. 8, 1048–1059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gibaja, V. et al. Oncogene 35, 558–566 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Baker, T. et al. Oncotarget 6, 32646–32655 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stuckey, J. I. et al. Nat. Chem. Biol. 12, 180–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gough, S. M. et al. Cancer Discov. 4, 564–577 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Falahi, F., Sgro, A. & Blancafort, P. Front. Oncol. 5, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maeder, M. L. et al. Nat. Biotechnol. 31, 1137–1142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kungulovski, G. et al. Epigenetics Chromatin 8, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, G. G. et al. Nature 459, 847–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olney, K. C., Nyer, D. B., Vargas, D. A., Wilson Sayres, M. A. & Haynes, K. A. BMC Syst. Biol. 12, 83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jullien, D. et al. J. Cell Sci. 129, 2673–2683 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sato, Y., Stasevich, T. J. & Kimura, H. Methods Mol. Biol. 1861, 91–102 (2018).

    Article  PubMed  Google Scholar 

  25. Lara, H. et al. J. Biol. Chem. 287, 29873–29886 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are supported by start-up support from the Wallace H. Coulter Department of Biological Engineering at the Emory School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmella A. Haynes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskin, N.L., Haynes, K.A. Chromatin engineering offers an opportunity to advance epigenetic cancer therapy. Nat Struct Mol Biol 26, 842–845 (2019). https://doi.org/10.1038/s41594-019-0299-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0299-6

  • Springer Nature America, Inc.

Navigation