Skip to main content
Log in

Epigenetic drug target deconvolution by mass spectrometry–based technologies

  • Perspective
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Abstract

The identification of the full target spectrum of active molecules, known as target deconvolution, has become an indispensable step during the drug discovery process. It is now achievable thanks to mass spectrometry–based technologies. Here we discuss these approaches in the context of epigenetic drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Applications of drug target deconvolution during the drug discovery process.
Fig. 2: MS-based drug target deconvolution strategies.

Similar content being viewed by others

References

  1. Portela, A. & Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Arrowsmith, C. H., Bountra, C., Fish, P. V., Lee, K. & Schapira, M. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov. 11, 384–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Prachayasittikul, V. et al. Exploring the epigenetic drug discovery landscape. Expert Opin. Drug Discov. 12, 345–362 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Atadja, P. & Perez, L. in Successful Drug Discovery, Vol. 2, 59–88 (Wiley Online Library, 2016).

  5. Dittmann, A. et al. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol. 9, 495–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Bantscheff, M., Scholten, A. & Heck, A. J. Revealing promiscuous drug-target interactions by chemical proteomics. Drug Discov. Today 14, 1021–1029 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Rix, U. & Superti-Furga, G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol. 5, 616–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Sharma, K. et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat. Methods 6, 741–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Bantscheff, M. et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol. 25, 1035–1044 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Taunton, J., Hassig, C. A. & Schreiber, S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272, 408–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Weigt, D., Hopf, C. & Médard, G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin. Epigenetics 8, 76 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat. Biotechnol. 29, 255–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Niphakis, M. J. & Cravatt, B. F. Enzyme inhibitor discovery by activity-based protein profiling. Annu. Rev. Biochem. 83, 341–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Salisbury, C. M. & Cravatt, B. F. Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl Acad. Sci. USA 104, 1171–1176 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chung, C. W. et al. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem. 54, 3827–3838 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).

    Article  PubMed  Google Scholar 

  18. Franken, H. et al. Thermal proteome profiling for unbiased identification of direct and indirect drug targets using multiplexed quantitative mass spectrometry. Nat. Protoc. 10, 1567–1593 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Becher, I. et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat. Chem. Biol. 12, 908–910 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Olsen, J. V. & Mann, M. Status of large-scale analysis of post-translational modifications by mass spectrometry. Mol. Cell. Proteomics 12, 3444–3452 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Greiner, D., Bonaldi, T., Eskeland, R., Roemer, E. & Imhof, A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat. Chem. Biol. 1, 143–145 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Garcia, B. A., Busby, S. A., Shabanowitz, J., Hunt, D. F. & Mishra, N. Resetting the epigenetic histone code in the MRL-lpr/lpr mouse model of lupus by histone deacetylase inhibition. J. Proteome Res. 4, 2032–2042 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, A. Y. et al. Quantitative analysis of histone deacetylase-1 selective histone modifications by differential mass spectrometry. J. Proteome Res. 7, 5177–5186 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Xu, K. et al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schölz, C. et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat. Biotechnol. 33, 415–423 (2015).

    Article  PubMed  Google Scholar 

  26. Musiani, D. et al. Proteomics profiling of arginine methylation defines PRMT5 substrate specificity. Sci. Signal. 12, eaat8388 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Noberini, R., Sigismondo, G. & Bonaldi, T. The contribution of mass spectrometry-based proteomics to understanding epigenetics. Epigenomics 8, 429–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Schirle, M., Bantscheff, M. & Kuster, B. Mass spectrometry-based proteomics in preclinical drug discovery. Chem. Biol. 19, 72–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Krönke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  Google Scholar 

  30. Schopper, S. et al. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat. Protoc. 12, 2391–2410 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Anders, L. et al. Genome-wide localization of small molecules. Nat. Biotechnol. 32, 92–96 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Bonaldi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noberini, R., Bonaldi, T. Epigenetic drug target deconvolution by mass spectrometry–based technologies. Nat Struct Mol Biol 26, 854–857 (2019). https://doi.org/10.1038/s41594-019-0279-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0279-x

  • Springer Nature America, Inc.

Navigation