Skip to main content
Log in

GENOME INTEGRITY

Resolution of a complex crisis at DNA 3′ termini

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Ribonucleotides that are misincorporated into DNA during replication are removed by topoisomerase 1, which generates 3′-terminal adducts that are not amenable to DNA repair and thus compromise genome stability. A recent report by Li et al. reveals that Apn2/APE2 resolves such blocked 3′ termini, thereby suppressing topoisomerase 1–induced mutations at ribonucleotide monophosphate sites within the genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Apn2/APE2 suppresses Top1-induced mutations at rNMP sites.

References

  1. Nick McElhinny, S. A. et al. Nat. Chem. Biol. 6, 774–781 (2010).

    Article  CAS  Google Scholar 

  2. Williams, J. S., Lujan, S. A. & Kunkel, T. A. Nat. Rev. Mol. Cell Biol. 17, 350–363 (2016).

    Article  CAS  Google Scholar 

  3. Jinks-Robertson, S. & Klein, H. L. Nat. Struct. Mol. Biol. 22, 176–178 (2015).

    Article  CAS  Google Scholar 

  4. Kim, N. et al. Science 332, 1561–1564 (2011).

    Article  CAS  Google Scholar 

  5. Sekiguchi, J. & Shuman, S. Mol. Cell 1, 89–97 (1997).

    Article  CAS  Google Scholar 

  6. Potenski, C. J., Niu, H., Sung, P. & Klein, H. L. Nature 511, 251–254 (2014).

    Article  CAS  Google Scholar 

  7. Li, F. et al. Nat. Struct. Mol. Biol. 26, 155–163 (2019).

    Article  CAS  Google Scholar 

  8. Johnson, R. E. et al. Genes Dev. 12, 3137–3143 (1998).

    Article  CAS  Google Scholar 

  9. Hadi, M. Z. & Wilson, D. M., III Environ. Mol. Mutagen. 36, 312–324 (2000).

    Article  CAS  Google Scholar 

  10. Tsuchimoto, D. et al. Nucleic Acids Res. 29, 2349–2360 (2001).

    Article  CAS  Google Scholar 

  11. Willis, J., Patel, Y., Lentz, B. L. & Yan, S. Proc. Natl Acad. Sci. USA 110, 10592–10597 (2013).

    Article  CAS  Google Scholar 

  12. Wallace, B. D. et al. Proc. Natl Acad. Sci. USA 114, 304–309 (2017).

    Article  CAS  Google Scholar 

  13. Burkovics, P., Szukacsov, V., Unk, I. & Haracska, L. Nucleic Acids Res. 34, 2508–2515 (2006).

    Article  CAS  Google Scholar 

  14. Unk, I., Haracska, L., Johnson, R. E., Prakash, S. & Prakash, L. J. Biol. Chem. 275, 22427–22434 (2000).

    Article  CAS  Google Scholar 

  15. Unk, I. et al. Mol. Cell. Biol. 22, 6480–6486 (2002).

    Article  CAS  Google Scholar 

  16. Burkovics, P., Hajdú, I., Szukacsov, V., Unk, I. & Haracska, L. Nucleic Acids Res. 37, 4247–4255 (2009).

    Article  CAS  Google Scholar 

  17. Lin, Y. et al. Nucleic Acids Res. 46, 2479–2494 (2018).

    Article  CAS  Google Scholar 

  18. Hossain, M. A., Lin, Y. & Yan, S. Int. J. Mol. Sci. 19, 2389 (2018).

    Article  Google Scholar 

  19. Mengwasser, K. E. et al. Mol. Cell 73, 885–899.e6 (2019).

    Article  CAS  Google Scholar 

  20. Li, J., Liang, W., Li, Y. & Qian, W. Plant Cell 30, 1954–1970 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Yan.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, S. Resolution of a complex crisis at DNA 3′ termini. Nat Struct Mol Biol 26, 335–336 (2019). https://doi.org/10.1038/s41594-019-0215-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0215-0

  • Springer Nature America, Inc.

Navigation