Skip to main content
Log in

UBIQIUTIN

Active state of Parkin

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Under steady-state conditions, the E3 ubiquitin ligase Parkin is localized to the cytosol in an autoinhibited state. Two recent studies describe the mechanism of Parkin activation by phosphorylation via structural rearrangement of the Ubl and RING2 domains, explaining how the RING2 domain is released from the core of Parkin to allow for ubiquitination of its substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Linear representation of Parkin’s domains.
Fig. 2: Activating steps of Parkin after phosphorylation by PINK1.
Fig. 3: Models of substrate ubiquitination on mitochondrial membranes.

References

  1. Kalia, L. V. & Lang, A. E. Lancet 386, 896–912 (2015).

    Article  PubMed  CAS  Google Scholar 

  2. Kitada, T. et al. Nature 392, 605–608 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. Valente, E. M. et al. Science 304, 1158–1160 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. Seirafi, M., Kozlov, G. & Gehring, K. FEBS J. 282, 2076–2088 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Narendra, D. P. et al. PLoS Biol. 8, e1000298 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shiba-Fukushima, K. et al. PLoS Genet. 10, e1004861 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kazlauskaite, A. et al. EMBO Rep. 16, 939–954 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kane, L. A. et al. J. Cell Biol. 205, 143–153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kazlauskaite, A. et al. Biochem. J. 460, 127–139 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Koyano, F. et al. Nature 510, 162–166 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Ordureau, A. et al. Mol. Cell 56, 360–375 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wauer, T., Simicek, M., Schubert, A. & Komander, D. Nature 524, 370–374 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Trempe, J. F. et al. Science 340, 1451–1455 (2013).

    Article  PubMed  CAS  Google Scholar 

  14. Kumar, A. et al. Nat. Struct. Mol. Biol. 24, 475–483 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sauvé, V. et al. Nat. Struct. Mol. Biol. 25, 623–630 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Gladkova, C., Maslen, S. L., Skehel, J. M. & Komander, D. Nature 559, 410–414 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. Sarraf, S. A. et al. Nature 496, 372–376 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ordureau, A. et al. Mol. Cell 70, 211–227 (2018).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Youle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Guerroué, F., Youle, R.J. Active state of Parkin. Nat Struct Mol Biol 25, 644–646 (2018). https://doi.org/10.1038/s41594-018-0101-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0101-1

  • Springer Nature America, Inc.

Navigation