Skip to main content
Log in

RNA FOLDING

Does RNA secondary structure drive translation or vice versa?

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

The effects of RNA secondary structure on translation have been well recognized; however, the global interplay between both in a dynamic cellular system is poorly understood. Beaudoin, Giraldez and colleagues have analyzed RNA structure dynamics during zebrafish embryonic development and have found that the ribosome unzips mRNA secondary structure during translation, thus leading to a global decrease of structure in highly translated transcripts. Furthermore, the authors establish RNA structure in the 3′ untranslated regions of mRNAs as a major regulator of transcript stability in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Translation drives changes in RNA secondary structure during the maternal-to-zygotic transition in zebrafish.

References

  1. Bhaskaran, H., Rodriguez-Hernandez, A. & Perona, J. J. RNA 18, 569–580 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Nissen, P., Hansen, J., Ban, N., Moore, P. B. & Steitz, T. A. Science 289, 920–930 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. Carthew, R. W. & Sontheimer, E. J. Cell 136, 642–655 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wan, Y. et al. Nature 505, 706–709 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Li, F. et al. Plant Cell 24, 4346–4359 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Spitale, R. C. et al. Nature 519, 486–490 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Li, F. et al. Cell Rep. 1, 69–82 (2012).

    Article  PubMed  CAS  Google Scholar 

  8. Kertesz, M. et al. Nature 467, 103–107 (2010).

    Article  PubMed  CAS  Google Scholar 

  9. Zheng, Q. et al. PLoS Genet 6, e1001141 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Nature 505, 701–705 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Ding, Y. et al. Nature 505, 696–700 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Pelletier, J. & Sonenberg, N. Cell 40, 515–526 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. Kozak, M. Proc. Natl. Acad. Sci. USA 83, 2850–2854 (1986).

    Article  PubMed  CAS  Google Scholar 

  14. Gosai, S. J. et al. Mol. Cell 57, 376–388 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Foley, S. W. et al. Dev. Cell 41, 204–220.e5 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Beaudoin, J.-D. et al. https://doi.org/10.1038/s41594-018-0091-z (2018).

  17. Kozak, M. Mol. Cell. Biol. 8, 2737–2744 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Giraldez, A. J. et al. Science 312, 75–79 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. Goodarzi, H. et al. Nature 485, 264–268 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Gregory.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kramer, M.C., Gregory, B.D. Does RNA secondary structure drive translation or vice versa?. Nat Struct Mol Biol 25, 641–643 (2018). https://doi.org/10.1038/s41594-018-0100-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-018-0100-2

  • Springer Nature America, Inc.

This article is cited by

Navigation