Skip to main content
Log in

Structural biology is solved — now what?

  • Comment
  • Published:

From Nature Methods

View current issue Submit your manuscript

The splendid computational success of AlphaFold and RoseTTAFold in solving the 60-year-old problem of protein folding raises an obvious question: what new avenues should structural biology explore? We propose a strong pivot toward the goal of reading mechanism and function directly from the amino acid sequence. This ambitious goal will require new data analytical tools and an extensive database of the atomic-level structural trajectories traced out on energy landscapes as proteins perform their function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Experimentally determined energy landscapes for the protein ryanodine receptor 1 (RYR1) with and without ligands.
Fig. 2: Series of energy landscapes for the hemagglutinin fusion peptide membrane insertion simulated by molecular dynamics.

References

  1. Jumper, J. et al. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  2. Baek, M. et al. Science 373, 871–876 (2021).

    Article  CAS  Google Scholar 

  3. Bernstein, F. C. et al. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  4. LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    Article  CAS  Google Scholar 

  5. Dashti, A. et al. Proc. Natl Acad. Sci. USA 111, 17492–17497 (2014).

    Article  CAS  Google Scholar 

  6. Hosseinizadeh, A. et al. Nat. Methods 14, 877–881 (2017).

    Article  CAS  Google Scholar 

  7. Dashti, A. et al. Nat. Commun. 11, 4734 (2020).

    Article  CAS  Google Scholar 

  8. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. Nat. Methods 18, 176–185 (2021).

    Article  CAS  Google Scholar 

  9. Punjani, A. & Fleet, D. J. J. Struct. Biol. 213, 107702 (2021).

    Article  CAS  Google Scholar 

  10. Giraldo-Barreto, J. et al. Sci. Rep. 11, 13657 (2021).

    Article  CAS  Google Scholar 

  11. Frauenfelder, H., Sligar, S. G. & Wolynes, P. G. Science 254, 1598–1603 (1991).

    Article  CAS  Google Scholar 

  12. Ourmazd, A. Nat. Methods 16, 941–944 (2019).

    Article  CAS  Google Scholar 

  13. Schwander, P., Fung, R., Phillips, G. N. & Ourmazd, A. New J. Phys. 12, 035007 (2010).

    Article  Google Scholar 

  14. Schwander, P., Fung, R. & Ourmazd, A. Phil. Trans. R. Soc. Lond. B 369, 20130567 (2014).

    Article  CAS  Google Scholar 

  15. Nakane, T., Kimanius, D., Lindahl, E. & Scheres, S. H. eLife 7, e36861 (2018).

    Article  Google Scholar 

  16. Giraldo-Barreto, J. Sci. Rep. 11, 13657 (2021).

  17. Hosseinizadeh, A. et al. Nature 599, 697–701 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with past and present members of the University of Wisconsin Milwaukee data science group. The development of underlying techniques was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award DE-SC0002164 (underlying dynamical techniques) and by the US National Science Foundation under awards STC-1231306 (underlying data analytical techniques) and DBI-2029533 (underlying analytical models).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ourmazd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ourmazd, A., Moffat, K. & Lattman, E.E. Structural biology is solved — now what?. Nat Methods 19, 24–26 (2022). https://doi.org/10.1038/s41592-021-01357-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01357-3

  • Springer Nature America, Inc.

This article is cited by

Navigation