Skip to main content
Log in

STRUCTURAL BIOLOGY

Neural networks learn the motions of molecular machines

  • News & Views
  • Published:

From Nature Methods

View current issue Submit your manuscript

New computational approaches capture molecular motion from cryo-EM images and provide a more complete understanding of protein dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Two possible motions of the yeast spliceosome, a highly dynamic complex.

References

  1. Zhong, E. D., Bepler, T., Berger, B. & Davis, J. H. Nat. Methods 18, 176–185 (2021).

    Article  CAS  Google Scholar 

  2. Chen, M. & Ludtke, S. Nat. Methods https://doi.org/10.1038/s41592-021-01220-5 (2021).

  3. Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Nature 587, 157–161 (2020).

    Article  CAS  Google Scholar 

  4. Nakane, T. et al. Nature 587, 152–156 (2020).

    Article  CAS  Google Scholar 

  5. Cheng, Y., Grigorieff, N., Penczek, P. A. & Walz, T. Cell 161, 438–449 (2015).

    Article  CAS  Google Scholar 

  6. Punjani, A. & Fleet, D. J. Preprint at bioRxiv https://doi.org/10.1101/2021.04.22.440893 (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Grant.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, T. Neural networks learn the motions of molecular machines. Nat Methods 18, 869–871 (2021). https://doi.org/10.1038/s41592-021-01235-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01235-y

  • Springer Nature America, Inc.

Navigation