Skip to main content
Log in

Cold atoms stay cool

  • Comment
  • Published:

From Nature Physics

View current issue Submit your manuscript

Methods for studying Bose–Einstein condensation in ultracold gases have been under development for over 40 years. A highly sophisticated suite of techniques has emerged from rapid technological advances that show no sign of slowing down.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  2. Davis, K. B. et al. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  3. Becker, D. et al. Nature 562, 391–395 (2018).

    Article  ADS  Google Scholar 

  4. Silvera, I. F. & Walraven, J. T. M. Phys. Rev. Lett. 44, 164–168 (1980).

    Article  ADS  Google Scholar 

  5. Silvera, I. F. & Walraven, J. T. M. Phys. Rev. Lett. 45, 1268–1271 (1980).

    Article  ADS  Google Scholar 

  6. Luiten, O. J., Reynolds, M. W. & Walraven, J. T. M. Phys. Rev. A 53, 381–389 (1996).

    Article  ADS  Google Scholar 

  7. Hess, H. F. et al. Phys. Rev. Lett. 59, 672–675 (1987).

    Article  ADS  Google Scholar 

  8. van Roijen, R., Berkhout, J. J., Jaakkola, S. & Walraven, J. T. M. Phys. Rev. Lett. 61, 931–934 (1988).

    Article  ADS  Google Scholar 

  9. Hess, H. F. Phys. Rev. B 34, 3476–3479 (1986).

    Article  ADS  Google Scholar 

  10. Kügler, K.-J., Paul, W. & Trinks, U. Phys. Lett. B 72, 422–424 (1978).

    Article  ADS  Google Scholar 

  11. Wineland, D. J., Drullinger, R. E. & Walls, F. L. Phys. Rev. Lett. 40, 1639–1642 (1978).

    Article  ADS  Google Scholar 

  12. Neuhauser, W., Hohenstatt, M., Toschek, P. & Dehmelt, H. Phys. Rev. Lett. 41, 233–236 (1978).

    Article  ADS  Google Scholar 

  13. Migdall, A. L., Prodan, J. V., Phillips, W. D., Bergeman, T. H. & Metcalf, H. J. Phys. Rev. Lett. 54, 2596–2599 (1985).

    Article  ADS  Google Scholar 

  14. Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Phys. Rev. Lett. 55, 48–51 (1985).

    Article  ADS  Google Scholar 

  15. Lett, P. D. et al. Phys. Rev. Lett. 61, 169–172 (1988).

    Article  ADS  Google Scholar 

  16. Raab, E. L., Prentiss, M., Cable, A., Chu, S. & Pritchard, D. E. Phys. Rev. Lett. 59, 2631–2634 (1987).

    Article  ADS  Google Scholar 

  17. Monroe, C., Swann, W., Robinson, H. & Wieman, C. Phys. Rev. Lett. 65, 1571–1574 (1990).

    Article  ADS  Google Scholar 

  18. Petrich, W., Anderson, M. H., Ensher, J. R. & Cornell, E. A. Phys. Rev. Lett. 74, 3352–3355 (1995).

    Article  ADS  Google Scholar 

  19. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Nature 415, 39–44 (2002).

    Article  ADS  Google Scholar 

  20. Weitenberg, C. & Simonet, J. Nat. Phys. https://doi.org/10.1038/s41567-021-01316-x (2021).

  21. Gross, C. & Bakr, W. Nat. Phys. https://doi.org/10.1038/s41567-021-01370-5 (2021).

  22. Vale, C. J. & Zwierlein, M. Nat. Phys. https://doi.org/10.1038/s41567-021-01434-6 (2021).

  23. Jeltes, T. et al. Nature 445, 402–405 (2007).

    Article  ADS  Google Scholar 

  24. Roberts, J. L. et al. Phys. Rev. Lett. 81, 5109–5112 (1998).

    Article  ADS  Google Scholar 

  25. Schreck, F. & van Druten, K. Nat. Phys. https://doi.org/10.1038/s41567-021-01379-w (2021).

  26. Loftus, T., Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Phys. Rev. Lett. 88, 173201 (2002).

    Article  ADS  Google Scholar 

  27. Greiner, M., Regal, C. & Jin, D. Nature 426, 537–540 (2003).

    Article  ADS  Google Scholar 

  28. Jochim, S. et al. Science 302, 2101–2103 (2003).

    Article  ADS  Google Scholar 

  29. Chevy, F. & Salomon, C. J. Phys. B 49, 192001 (2016).

    Article  ADS  Google Scholar 

  30. Navon, N., Nascimbène, S., Chevy, F. & Salomon, C. Science 328, 729–732 (2010).

    Article  ADS  Google Scholar 

  31. Van Houcke, K. et al. Nat. Phys. 318, 366–370 (2012).

    Article  Google Scholar 

  32. Cabrera, C. R. et al. Science 359, 301–304 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  33. Norcia, M. & Ferlaino, F. Nat. Phys. https://doi.org/10.1038/s41567-021-01398-7 (2021).

  34. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Nature 539, 259–262 (2016).

    Article  ADS  Google Scholar 

  35. Norcia, M. A. et al. Nature 596, 357–361 (2016).

    Article  ADS  Google Scholar 

  36. Kaufman, A. M. & Ni, K.-K. Nat. Phys. https://doi.org/10.1038/s41567-021-01357-2 (2021).

  37. Sauter, T. H., Neuhauser, W., Blatt, R. & Toschek, P. E. Phys. Rev. Lett. 57, 1696–1698 (1986).

    Article  ADS  Google Scholar 

  38. Chu, S., Bjorkholm, J. E., Ashkin, A. & Cable, A. Phys. Rev. Lett. 57, 314–317 (1986).

    Article  ADS  Google Scholar 

  39. Navon, N., Smith, R. P. & Hadzibabic, Z. Nat. Phys. https://doi.org/10.1038/s41567-021-01403-z (2021).

  40. Walraven, J. Europhys. News 26, 77–78 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jook Walraven.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walraven, J. Cold atoms stay cool. Nat. Phys. 17, 1294–1295 (2021). https://doi.org/10.1038/s41567-021-01453-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01453-3

  • Springer Nature Limited

Navigation