Skip to main content
Log in

Opportunities and challenges of interlayer exciton control and manipulation

  • Comment
  • Published:

From Nature Nanotechnology

View current issue Submit your manuscript

Advances in van der Waals heterostructures allow the control of interlayer excitons by electrical and other means, promising exciting opportunities for high-temperature exciton condensation and valley–spin optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Interlayer excitons.
Fig. 2: Quantum-confined Stark effect in TMD bilayers.
Fig. 3: Electrostatic gating effect on interlayer excitons in MoSe2/WSe2 hetero-bilayers.

References

  1. Islam, M. N. et al. Appl. Phys. Lett. 50, 1098–1100 (1987).

    Article  CAS  Google Scholar 

  2. Snoke, D. Science 298, 1368–1372 (2002).

    Article  CAS  Google Scholar 

  3. Butov, L. V. J. Phys. Cond. Matt. 16, R1577 (2004).

    Article  CAS  Google Scholar 

  4. Splendiani, A. et al. Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  5. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  6. Mak, K. F. & Shan, J. Nat. Photonics 10, 216–226 (2016).

    Article  CAS  Google Scholar 

  7. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  8. Geim, A. K. & Grigorieva, I. V. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  9. Fang, H. et al. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

    Article  CAS  Google Scholar 

  10. Rivera, P. et al. Nat. Commun. 6, 6242 (2015).

    Article  CAS  Google Scholar 

  11. Rivera, P. et al. Science 351, 688–691 (2016).

    Article  CAS  Google Scholar 

  12. Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Nano Lett. 18, 137–143 (2018).

    Article  CAS  Google Scholar 

  13. Ciarrocchi, A. et al. Preprint at https://arXiv.org/abs/1803.06405 (2018).

  14. Miller, D. A. B. et al. Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  CAS  Google Scholar 

  15. Fogler, M. M., Butov, L. V. & Novoselov, K. S. Nat. Commun. 5, 4555 (2014).

    Article  CAS  Google Scholar 

  16. Komsa, H.-P. & Krasheninnikov, A. V. Phys. Rev. B 88, 085318 (2013).

    Article  Google Scholar 

  17. Amin, B., Singh, N. & Schwingenschlögl, U. Phys. Rev. B 92, 075439 (2015).

    Article  Google Scholar 

  18. Gong, C. et al. Appl. Phys. Lett. 103, 053513 (2013).

    Article  Google Scholar 

  19. Wu, F., Lovorn, T. & MacDonald, A. H. Phys. Rev. Lett. 118, 147401 (2017).

    Article  Google Scholar 

  20. Wu, F., Lovorn, T. & MacDonald, A. H. Phys. Rev. B 97, 035306 (2018).

    Article  Google Scholar 

  21. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Sci. Adv. 3, e1701696 (2017).

    Article  Google Scholar 

  22. Nagler, P. et al. Nat. Commun. 8, 1551 (2017).

    Article  Google Scholar 

  23. Yankowitz, M. et al. Nature 557, 404–408 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

K.F.M. acknowledges the support of a David and Lucille Packard Fellowship and a Sloan Fellowship. J.S. acknowledges support from the National Science Foundation under grant DMR-1807810.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kin Fai Mak or Jie Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mak, K.F., Shan, J. Opportunities and challenges of interlayer exciton control and manipulation. Nature Nanotech 13, 974–976 (2018). https://doi.org/10.1038/s41565-018-0301-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0301-1

  • Springer Nature Limited

This article is cited by

Navigation