Skip to main content
Log in

The development of molecule-based porous material families and their future prospects

  • Comment
  • Published:

From Nature Materials

View current issue Submit your manuscript

Metal–organic frameworks, porous coordination network materials constructed with metal ions and organic molecules, have grown over the past 20 years into an innovative chemistry that has contributed to solutions for the problems faced by humanity in the environment, resources, energy and health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Major MOF discoveries and developments over the past 20 years.
Fig. 2: Porous materials can manipulate gases, ions and macromolecules and contribute to society in many aspects.

References

  1. Yaghi, O. M. et al. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  2. Kitagawa, S., Kitaura, R. & Noro, S. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  3. Bennett, T. D. et al. Nat. Mater. 20, 1179–1187 (2021).

    Article  CAS  Google Scholar 

  4. Devic, T. & Serre, C. Chem. Soc. Rev. 43, 6097–6115 (2014).

    Article  CAS  Google Scholar 

  5. Lee, J. et al. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  6. Chen, L. & Xu, Q. Matter 1, 57–89 (2019).

    Article  Google Scholar 

  7. Horike, S., Shimomura, S. & Kitagawa, S. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  8. Deng, H. et al. Nat. Chem. 2, 439–443 (2010).

    Article  CAS  Google Scholar 

  9. Bon, V. et al. Adv. Funct. Mater. 30, 1907847 (2020).

    Article  CAS  Google Scholar 

  10. Tan, J. C., Bennett, T. D. & Cheetham, A. K. Proc. Natl Acad. Sci. USA 107, 9938–9943 (2010).

    Article  CAS  Google Scholar 

  11. Xie, L. S., Skorupskii, G. & Dincă, M. Chem. Rev. 120, 8536–8580 (2020).

    Article  CAS  Google Scholar 

  12. Stassen, I. et al. Nat. Mater. 15, 304–310 (2016).

    Article  CAS  Google Scholar 

  13. Allendorf, M. D. et al. Chem. Eur. J. 17, 11372–11388 (2011).

    Article  CAS  Google Scholar 

  14. Horcajada, P. et al. Chem. Rev. 112, 1232–1268 (2012).

    Article  CAS  Google Scholar 

  15. He, C., Liu, D. & Lin, W. Chem. Rev. 115, 11079–11108 (2015).

    Article  CAS  Google Scholar 

  16. Bennett, T. D. & Horike, S. Nat. Rev. Mater. 3, 431–440 (2018).

    Article  Google Scholar 

  17. Chung, Y. G. et al. Chem. Mater. 26, 6185–6192 (2014).

    Article  CAS  Google Scholar 

  18. Zhu, Y. et al. Nat. Mater. 16, 532–536 (2017).

    Article  CAS  Google Scholar 

  19. Cliffe, M. J. et al. Nat. Commun. 5, 4176 (2014).

    Article  CAS  Google Scholar 

  20. Lin, J. B. et al. Science 374, 1464–1469 (2021).

    Article  CAS  Google Scholar 

  21. Datta, S. J. et al. Science 376, 1080–1087 (2022).

    Article  CAS  Google Scholar 

  22. Butler, K. T. et al. Chem. Sci. 7, 6316–6324 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Horike or Susumu Kitagawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Christian Serre and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horike, S., Kitagawa, S. The development of molecule-based porous material families and their future prospects. Nat. Mater. 21, 983–985 (2022). https://doi.org/10.1038/s41563-022-01346-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01346-7

  • Springer Nature Limited

This article is cited by

Navigation