Skip to main content
Log in

Route to complex colloidal crystals through entropy compartmentalization

  • Research Briefing
  • Published:

From Nature Chemistry

View current issue Submit your manuscript

Colloidal clathrate crystals self-assembled from hard polyhedral shapes in computer simulations are stabilized by entropy compartmentalization, whereby hosts and guests contribute unequally to the entropy. This creative solution to satisfying the laws of thermodynamics suggests new ways to make colloidal crystals with open cages and hierarchical host–guest structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Engineering an entropy-compartmentalized host–guest colloidal clathrate.

References

  1. Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal Engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019). A review article that summarizes the plethora of crystal structures possible for DNA-grafted nanoparticles.

    Article  CAS  Google Scholar 

  2. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012). This paper reports a multitude of crystal structures self-assembled from 101 different shapes solely through entropy maximization.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020). A GPU-accelerated, open-source Python package for molecular simulations of shaped nanoparticles.

    Article  CAS  Google Scholar 

  4. Lin, H. et al. Clathrate colloidal crystals. Science. 355, 931–935 (2017). This paper reports the first colloidal clathrate self-assembled in the lab.

    Article  CAS  PubMed  Google Scholar 

  5. Lee, S., Teich, E. G., Engel, M. & Glotzer, S. C. Entropic colloidal crystallization pathways via fluid–fluid transitions and multi-dimensional prenucleation motifs. Proc. Natl Acad. Sci. USA 116, 14843–14851 (2019). This paper reports simulations of self-assembled, entropic colloidal crystals with 92-, 244- and 432-particle unit cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patchkovskii, S. & Tse, J. S. Thermodynamic stability of hydrogen clathrates. Proc. Natl Acad. Sci. USA 100, 14645–14650 (2003). First principles theoretical study showing that individual H2 molecule guests and clusters of H2 freely rotate inside the cages of a type-II hydrogen clathrate made in the lab.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is a summary of: Lee, S. et al. Entropy compartmentalization stabilizes open host–guest colloidal clathrates. Nat. Chem. https://doi.org/10.1038/s41557-023-01200-6 (2023).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Route to complex colloidal crystals through entropy compartmentalization. Nat. Chem. 15, 901–902 (2023). https://doi.org/10.1038/s41557-023-01227-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01227-9

  • Springer Nature Limited

Navigation