Skip to main content

Advertisement

Log in

Anti-microbial efficacy of l-glutaminase (EC 3.5.1.2) against multidrug-resistant Pseudomonas aeruginosa infection

  • Article
  • Published:
The Journal of Antibiotics Submit manuscript

Abstract

The aims of this study were isolation-purification and characterization of l-glutaminase from L. gasseri BRLHM clinical isolates and investigation of its efficiency as an antimicrobial agent against multidrug-resistant P. aeruginosa. The MICs of l-glutaminase and gentamicin reference were evaluated by the well-diffusion method. The biofilm on the IUD contraceptive was visualized using atomic force microscopy (AFM) image analyses. The purified l-glutaminase possessed significant antimicrobial activity against P. aeruginosa isolates (p < 0.05), and the antibiofilm formation activity of the purified l-glutaminase was stronger than the antibiofilm activity of the referral standard drug, gentamicin (P < 0.05), which were checked by the inhibition of the biofilm formation on the IUD contraceptive device. Investigations indicated that l-glutaminase may have a crucial role in future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amobonye A, Singh S, Pillai S. Recent advances in microbial glutaminase production and applications—a concise review. Crit Rev Biotechnol. 2019;39:944–63.

    Article  CAS  PubMed  Google Scholar 

  2. Saleem R, Ahmed S. Isolation and characterization of L-glutaminase producing bacteria. Preprint at https://www.biorxiv.org/content/10.1101/2020.10.28.358838v1.full (2020).

  3. Jambulingam K, Sudhakar S. Purification and characterisation of a novel broad spectrum anti-tumor L-glutaminase enzyme from marine Bacillus subtilis strain JK-79. Afr J Microbiol Res. 2019;13:232–44.

    Article  Google Scholar 

  4. Roberts J, McGregor WG. Inhibition of mouse retroviral disease by bioactive glutaminase-asparaginase. J Gen Virol. 1991;72:299–305.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts J, MacAllister TW, Sethuraman N, Freeman AG. Genetically engineered glutaminase and its use in antiviral and anticancer therapy. 2001; U.S. Patent Application No. 11/416,133.

  6. Xiang H, Sun-Waterhouse D, Cui C, Wang W, Dong K. Modification of soy protein isolate by glutaminase for nanocomplexation with curcumin. Food Chem. 2018;268:504–12.

    Article  CAS  PubMed  Google Scholar 

  7. Raj JEE, et al. Isolation and screening of L-asparaginase and L-glutaminase producing bacteria and their antimicrobial potential from environmental sources. IOSR J Pharm Biol Sci. 2016;11:47–53.

    Google Scholar 

  8. Alemzadeh I, Vaziri AS, Khosravi-Darani K, Monsan P. Enzymes in functional food development. In Novel food grade enzymes: applications in food processing and preservation industries. 217–52. Springer; 2022. ISBN: 978-981-19-1287-0.

  9. Gul ST, Alsayeqh AF. Probiotics as an alternative approach to antibiotics for safe poultry meat production. Pak Vet J. 2022;42:285–91.

  10. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32:23–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarkar A, Abhyankar I, Saha P, Kumar SR, Rao KV. Antioxidant, haemolytic activity of L-glutaminase producing marine actinobacteria isolated from salt pan soil of coastal Andhra Pradesh. Res J Pharm Technol. 2014;7:544–549.

    Google Scholar 

  12. Arena MP, et al. Use of Lactobacillus plantarum strains as a bio-control strategy against food-borne pathogenic microorganisms. Front Microbiol. 2016;7:464.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Weingand-Ziadé A, Gerber-Décombaz C, Affolter M. Functional characterization of a salt-and thermotolerant glutaminase from Lactobacillus rhamnosus. Enzym Microb Technol. 2003;32:862–67.

    Article  Google Scholar 

  14. Khan KA, et al. Structural diversity and functional variability of gut microbial communities associated with honey bees. Microb Pathog. 2020;138:103793.

    Article  PubMed  Google Scholar 

  15. Algonaiman R, Alharbi HF, Barakat H. Antidiabetic and hypolipidemic efficiency of Lactobacillus plantarum fermented oat (Avena sativa) extract in streptozotocin-induced diabetes in rats. Fermentation. 2022;8:267.

    Article  CAS  Google Scholar 

  16. He Y, et al. Evaluation of the inhibitory effects of Lactobacillus gasseri and Lactobacillus crispatus on the adhesion of seven common lower genital tract infection-causing pathogens to vaginal epithelial cells. Front Med. 2020;7:284.

    Article  Google Scholar 

  17. Majigo MV, Kashindye P, Mtulo Z. Bacterial vaginosis, the leading cause of genital discharge among women presenting with vaginal infection in Dar es Salaam, Tanzania. Afr Health Sci. 2021;21:531–37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mohamed-Ahmed O, Hinshaw K, Knight M. Operative vaginal delivery and post-partum infection. Best Pract Res Clin Obstet Gynaecol. 2019;56:93–106.

    Article  PubMed  Google Scholar 

  19. Holdcroft AM, Ireland DJ, Payne MS. The vaginal microbiome in health and disease—what role do common intimate hygiene practices play? Microorganisms. 2023;11:298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auriemma RS, et al. The vaginal microbiome: a long urogenital colonization throughout woman life. Front Cell Infect Microbiol. 2021;11:686167.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qin S, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. PangZ R, GLICK BR. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. BiotechnolAdv. 2019;37:177G192.

    Google Scholar 

  23. Dalton E, Castillo E. Post partum infections: a review for the non-OBGYN. Obstet Med. 2014;7:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Antunes P, et al. Biocides and multi-drug resistance associated with the first extended-spectrum beta-lactamase-producing nontyphoidal salmonella strain isolated in Portugal. Clin Microbiol Infect. 2012;18. https://hdl.handle.net/10216/95012.

  25. Liabsuetrakul T, Choobun T, Peeyananjarassri K, Islam QM. Antibiotic prophylaxis for operative vaginal delivery. Cochrane Database Syst Rev. 2020;2020:1–33.

  26. Vijayan N, Swapna TS, Haridas M, Sabu A. Therapeutic enzymes: l-glutaminase. Current developments in biotechnology and bioengineering. Elsevier; 2017. p. 233–48.

    Chapter  Google Scholar 

  27. Mahdi LH, Auda IG, Ali IM, Alsaadi LG, Zwain LAH. Antibacterial activity of a novel characterized and purified bacteriocin extracted from Bifidobacterium adolescentis. Rev Med Microbiol. 2018;29:73–80.

    Article  Google Scholar 

  28. Iyer PV, Singhal RS. Screening and selection of marine isolate for L-glutaminase production and media optimization using response surface methodology. Appl Biochem Biotechnol. 2009;159:233–50.

    Article  CAS  PubMed  Google Scholar 

  29. Hasson B, Mahdi L, Essa R. Evidence of antioxidant activity of novel L-glutaminase purified from L. Gasseri BRLHM. J Appl Sci Nanotechnol. 2021;1:44–51.

    Article  Google Scholar 

  30. Manna S, Sinha A, Sadhukhan R, Chakrabarty SL. Purification, characterization and antitumor activity of L-asparaginase isolated from Pseudomonas stutzeri MB-405. Curr Microbiol 1995;30:291–98.

    Article  CAS  PubMed  Google Scholar 

  31. More SS, et al. Purification and characterization of anti-cancer L-glutaminase of Bacillus cereus strain LC13. Proc Natl Acad Sci India Sect B Biol Sci. 2018;88:695–705.

    Article  CAS  Google Scholar 

  32. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.

    Article  CAS  PubMed  Google Scholar 

  33. Elshafei AM, et al. Purification, kinetic properties and antitumor activity of L-glutaminase from Penicillium brevicompactum NRC829. Br Micro Res J. 2014;4:97–115.

    Article  Google Scholar 

  34. Imada A, Igarasi S, Nakahama K, Isono M. Asparaginase and glutaminase activities of micro-organisms. Microbiology. 1973;76:85–99.

    CAS  Google Scholar 

  35. Tortora GJ, Funke BR, Case CL. Microbiology: an introduction. Pearson; 2018; 13th edition, ISBN-13: 9780135789377

  36. Wayne PA. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2010; CLSI document M100-S20. https://cir.nii.ac.jp/crid/1572261550694185984.

  37. Jawad KH et al. Antibacterial activity of bismuth oxide nanoparticles compared to amikacin against Acinetobacter baumannii and Staphylococcus aureus. J Nanomater. 2022;2022. Article ID 8511601. https://doi.org/10.1155/2022/8511601.

  38. Abdel-Aziz MM, Al-Omar MS, Mohammed HA, Emam TM. In vitro and Ex vivo antibiofilm activity of a lipopeptide biosurfactant produced by the entomopathogenic Beauveria bassiana strain against microsporum canis. Microorganisms. 2020;8:232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ibraheem DR, Hussein NN, Sulaiman GM, Mohammed HA, Khan RA, Al Rugaie O. Ciprofloxacin-loaded silver nanoparticles as potent nano-antibiotics against resistant pathogenic bacteria. Nanomaterials. 2022;12:2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahdi L, Sana’a AK, Zwain L. The effect of Pediococcus pentosaceus bacteriocin on Listeria monocytogenes in soft cheese. In International Conference on Medicinal Genetics, Cellular & Molecular Biology, Pharmaceutical & Food Sciences. (GCMBPF-2015), Istanbul; 2015.

  41. Lo J-H, Kulp SK, Chen C-S, Chiu H-C. Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent. Antimicrob Agents Chemother. 2014;58:7375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pan M, Hidalgo-Cantabrana C, Goh YJ, Sanozky-Dawes R, Barrangou R. Comparative aalysis of Lactobacillus gasseri and Lactobacillus crispatus isolated from human urogenital and gastrointestinal tracts. Front Microbiol. 2019;10:3146.

    Article  PubMed  Google Scholar 

  43. Nouraldin A, Baddour M, Harfoush R, Essa S. Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med. 2016;52:99–105.

  44. Sajitha N, Vasuki S, Suja M. Antibacterial and antioxidant activities of L-glutaminase from seaweed endophytic fungi Penicillium citrinum. World J Pharm Sci. 2014;3:682–95.

    Google Scholar 

  45. Maldonado NC, Silva de Ruiz C, Cecilia M, Nader-Macias ME. A simple technique to detect Klebsiella biofilm-forming-strains. Inhibitory potential of Lactobacillus fermentum CRL 1058 whole cells and products. Commun. Curr. Res. Educ. Top. Trends Appl. Microbiol. 2007;2007:52–59.

  46. Koibuchi K, Nagasaki H, Yuasa A, Kataoka J, Kitamoto K. Molecular cloning and characterization of a gene encoding glutaminase from Aspergillus oryzae. Appl Microbiol Biotechnol. 2000;54:59–68.

    Article  CAS  PubMed  Google Scholar 

  47. Jalil MB, Abdul-Hussien ZR, Al-Hmudi HA. Isolation and identification of multi drug resistant biofilm producer Pseudomonas aeruginosa from patients with burn wound infection in basra province/iraq. Int J Dev Res. 2018;7:17258–62.

    Google Scholar 

  48. Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020;13:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abu-Tahon M, Isaac G. Purification, characterization and anticancer efficiency of L-glutaminase from Aspergillus flavus. J Gen Appl Microbiol. 2019;65:284–92.

Download references

Acknowledgements

The authors thank the Department of Biology, College of Science, Mustansiriyah University, Baghdad, Iraq; and the Head and staff members of the Division of Biotechnology, Department of Applied Sciences, University of Technology, and Dean College of Pharmacy, and Head Department of Medicinal Chemistry, College of Pharmacy, Qassim University, Saudi Arabia for support and encouragement during the course of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghassan M. Sulaiman, Hamdoon A. Mohammed or Riaz Khan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, L.H., Hasoon, B.A., Sulaiman, G.M. et al. Anti-microbial efficacy of l-glutaminase (EC 3.5.1.2) against multidrug-resistant Pseudomonas aeruginosa infection. J Antibiot 77, 111–119 (2024). https://doi.org/10.1038/s41429-023-00678-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-023-00678-z

  • Springer Japan KK

Navigation