Skip to main content
Log in

Antibiotic repurposing: bis-catechol- and mixed ligand (bis-catechol-mono-hydroxamate)-teicoplanin conjugates are active against multidrug resistant Acinetobacter baumannii

  • Article
  • Published:
The Journal of Antibiotics Submit manuscript

Abstract

Antibiotics that are normally used to treat infections caused by Gram-positive bacteria might be made effective against Gram-negative bacterial infections, if they can circumvent permeability barriers and antibiotic deactivation processes associated with Gram-negative bacteria. Herein we report syntheses of bis-catechol–teicoplanin and mixed ligand catechol–hydroxamate–teicoplanin conjugates. Antibacterial activity assays revealed that conjugation of teicoplanin, which is only known to be active against Gram-positive bacteria, to the siderophore mimics induced potent activity against multidrug resistant strains of select Gram-negative bacteria (Acinetobacter baumannii) while retaining moderate activity against Gram-positive bacteria (Staphylococcus aureus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Cornelli C, Gallo GG, Cavalleri B. Teicoplanin: chemical, physico-chemical and biological aspects. Farm, Ed Sci. 1987;10:767–86.

    Google Scholar 

  2. Parenti F. Structure and mechanism of action of teicoplanin. J Hosp Infect. 1986;7 Suppl. A:79–83.

    Article  Google Scholar 

  3. Kahne D, Leimkuhler C, Lu W, Walsh C. Glycopeptide and lipoglycopeptide antibiotics. Chem Rev. 2005;105:425–48.

    Article  CAS  Google Scholar 

  4. Ravi T, Deepak K, Nayak J, Manish Kumar P, Prakash V. In-vitro activity of teicoplanin against clinical methicillinresistant Staphylococcus aureus isolates. J Microbiol Biotechnol. 2017;2:000112.

    Google Scholar 

  5. Arioli V, Pallanza R. Teicoplanin-resistant coagulase-negative staphylococci. Lancet. 1987;1:39.

    Article  CAS  Google Scholar 

  6. Malabarba A, Trani A, Strazzolini P, Cietto G, Ferrari P, Tarzia G, Pallanza R, Berti M. Synthesis and biological properties of N63-carboxamides of teicoplanin antibiotics. Structure-activity relationships. J Med Chem. 1989;32:2450–60.

    Article  CAS  Google Scholar 

  7. Szücs Z, Ostorhazi E, Kicsak M, Nagy L, Borbas A, Herczegh P. New semisynthetic teicoplanin derivatives have comparable in vitro activity to that of oritavancin against clinical isolates of VRE. J Antibiot. 2019;72:524–34.

    Article  CAS  Google Scholar 

  8. Wencewicz TA, Miller MJ. Sideromycins as pathogen targeted antibiotics. Top Med Chem. 2017;26:151–184.

    Article  CAS  Google Scholar 

  9. Hider RC, Kong X. Chemistry and biology of siderophores. Nat Prod Rep. 2010;27:637–57.

    Article  CAS  Google Scholar 

  10. Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. An overview of recent progress in siderophore-antibitoic conjugates. Eur J Med Chem. 2019;18:111615.

    Article  CAS  Google Scholar 

  11. Lin YM, Ghosh M, Miller PA, Möllmann U, Miller MJ. Synthetic sideromycins (skepticism and optimism): selective generation of either broad spectrum or narrow spectrum Gram-negative antibiotics. Biometals. 2019;32:425–51.

    Article  CAS  Google Scholar 

  12. Ji C, Juarez-Hernandez RE, Miller MJ. Exploiting bacterial iron acquisition: siderophore conjugates. Future Med Chem. 2012;4:297–313.

    Article  CAS  Google Scholar 

  13. Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckhow M, Yu H, Li S, Huang W, Zajicek J, Miller MJ. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multi-drug resistant Acinetobacter baumannii both in vitro and in vivo. J Med Chem. 2017;60:4577–83.

    Article  CAS  Google Scholar 

  14. Ghosh M, Lin YM, Miller PA, Möllmann U, Boggess WC, Miller MJ. Siderophore conjugates of daptomycin are potent inhibitors of carbapenem resistant strains of Acinetobacter baumannii. ACS Infect Dis. 2018;4:1529–35.

    Article  CAS  Google Scholar 

  15. Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J Med Chem. 2018;61:3845–54.

    Article  CAS  Google Scholar 

  16. Braun NA, Ousmer M, Bray JD, Bouchu D, Peters K, Peters E-M, Ciufolini MA. New oxidative transformations of phenolic and indolic oxazolines:  an avenue to useful azaspirocyclic building blocks. J Org Chem. 2000;65:4397–408.

    Article  CAS  Google Scholar 

  17. Möllmann U, Heinisch L, Bauernfeind A, Kohler T, AnkelFuchs D. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. BioMetals. 2009;22:615–24.

    Article  CAS  Google Scholar 

  18. Ghosh A, Ghosh M, Niu C, Malouin F, Möllmann U, Miller MJ. Iron transport-mediated drug delivery using mixed ligand siderophore-β-lactam conjugates. Chem Biol. 1996;3:1011–9.

    Article  CAS  Google Scholar 

  19. Wencewicz TA, Miller MJ. Biscatecholate–monohydroxamate mixed ligand siderophore–carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii. J Med Chem. 2013;56:4044–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Hsiri Therapeutics for support of this research and B. Boggess and N. Sevov at the University of Notre Dame for LC/MS assistance and the University of Notre Dame NMR facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Miller.

Ethics declarations

Conflict of interest

The authors are employees of Hsiri Therapeutics and claim no other conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41429_2019_268_MOESM1_ESM.docx

Supplemental Material: Antibiotic Repurposing: Bis-catechol- and Mixed Ligand (Bis-catechol-mono-hydroxamate)-Teicoplanin Conjugates are Active against Multi-Drug Resistant Acinetobacter baumannii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, M., Miller, P.A. & Miller, M.J. Antibiotic repurposing: bis-catechol- and mixed ligand (bis-catechol-mono-hydroxamate)-teicoplanin conjugates are active against multidrug resistant Acinetobacter baumannii. J Antibiot 73, 152–157 (2020). https://doi.org/10.1038/s41429-019-0268-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41429-019-0268-7

  • Springer Japan KK

Navigation