Skip to main content

Advertisement

Log in

Transcriptional induction of MMP-10 by TGF-β, mediated by activation of MEF2A and downregulation of class IIa HDACs

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Transforming growth factor (TGF)-β regulates the expression of matrix metalloproteinases (MMPs) and components of the extracellular matrix, thereby profoundly affecting the microenvironment of cells including cancerous ones. We studied MMP-10 induction by TGF-β in mammary epithelial cells and found that the induction was dependent on the myocyte enhancer factor (MEF)-2 transcription factor. TGF-β upregulated the gene promoter through the MEF2 site, and knockdown of the MEF2A transcription factor negatively affected MMP-10 induction, whereas its overexpression had a positive effect on the induction. In response to TGF-β, acetylation and concomitant binding of MEF2A to the promoter region increased, thus suggesting a critical role of MEF2A in transactivation of MMP-10 by TGF-β. Consistent with the fact that class IIa histone deacetylases (HDACs) interact with MEF2 and suppress transcription, knockdown of HDACs increased and their overexpression inhibited MMP-10 expression. Intriguingly, TGF-β promoted proteasome-dependent degradation of HDACs. Consistent with this, acetylation of core histones was increased around the MEF2 site of the MMP-10 promoter by TGF-β and alleviated by overexpression of HDACs. Collectively, it is possible that TGF-β transcriptionally upregulated MMP-10 through activation of MEF2A, concomitant with acetylation of core histones increasing around the promoter, as a consequence of degradation of the class IIa HDACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Angelelli C, Magli A, Ferrari D, Ganassi M, Matafora V, Parise F et al. (2008). Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells. Nucleic Acids Res 36: 915–928.

    Article  CAS  PubMed  Google Scholar 

  • Aung PP, Oue N, Mitani Y, Nakayama H, Yoshida K, Noguchi T et al. (2006). Systematic search for gastric cancer-specific genes based on SAGE data: melanoma inhibitory activity and matrix metalloproteinase-10 are novel prognostic factors in patients with gastric cancer. Oncogene 25: 2546–2557.

    Article  CAS  PubMed  Google Scholar 

  • Bierie B, Moses HL . (2006). Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6: 506–520.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T . (2003). Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem 253: 269–285.

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN . (2006). Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126: 321–334.

    Article  CAS  PubMed  Google Scholar 

  • Cho NH, Hong KP, Hong SH, Kang S, Chung KY, Cho SH . (2004). MMP expression profiling in recurred stage IB lung cancer. Oncogene 23: 845–851.

    Article  CAS  PubMed  Google Scholar 

  • Clark IM, Swingler TE, Sampieri CL, Edwards DR . (2008). The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40: 1362–1378.

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Akhurst RJ, Balmain A . (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29: 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Derynck R, Zhang Y, Feng XH . (1998). Smads: transcriptional activators of TGF-beta responses. Cell 95: 737–740.

    Article  CAS  PubMed  Google Scholar 

  • Gill JH, Kirwan IG, Seargent JM, Martin SW, Tijani S, Anikin VA et al. (2004). MMP-10 is overexpressed, proteolytically active, and a potential target for therapeutic intervention in human lung carcinomas. Neoplasia 6: 777–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Impola U, Uitto VJ, Hietanen J, Hakkinen L, Zhang L, Larjava H et al. (2004). Differential expression of matrilysin-1 (MMP-7), 92 kD gelatinase (MMP-9), and metalloelastase (MMP-12) in oral verrucous and squamous cell cancer. J Pathol 202: 14–22.

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Imamura T . (2008). Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci 99: 2107–2112.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa F, Nose K, Shibanuma M . (2008). Downregulation of hepatocyte nuclear factor-4alpha and its role in regulation of gene expression by TGF-beta in mammary epithelial cells. Exp Cell Res 314: 2131–2140.

    Article  CAS  PubMed  Google Scholar 

  • Izzi L, Attisano L . (2004). Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene 23: 2071–2078.

    Article  CAS  PubMed  Google Scholar 

  • Jakowlew SB . (2006). Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25: 435–457.

    Article  CAS  PubMed  Google Scholar 

  • Kang JS, Alliston T, Delston R, Derynck R . (2005). Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 24: 2543–2555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanome T, Itoh N, Ishikawa F, Mori K, Kim-Kaneyama JR, Nose K et al. (2007). Characterization of Jumping translocation breakpoint (JTB) gene product isolated as a TGF-beta1-inducible clone involved in regulation of mitochondrial function, cell growth and cell death. Oncogene 26: 5991–6001.

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Zhao M, Morikawa A, Sugiyama T, Chakravortty D, Koide N et al. (2000). Big mitogen-activated kinase regulates multiple members of the MEF2 protein family. J Biol Chem 275: 18534–18540.

    Article  CAS  PubMed  Google Scholar 

  • Kerkela E, Ala-aho R, Lohi J, Grenman R, V MK, Saarialho-Kere U . (2001). Differential patterns of stromelysin-2 (MMP-10) and MT1-MMP (MMP-14) expression in epithelial skin cancers. Br J Cancer 84: 659–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T et al. (2003). Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31: 1007–1014.

    Article  CAS  PubMed  Google Scholar 

  • Lemercier C, Verdel A, Galloo B, Curtet S, Brocard MP, Khochbin S . (2000). mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem 275: 15594–15599.

    Article  CAS  PubMed  Google Scholar 

  • Levy L, Hill CS . (2005). Smad4 dependency defines two classes of transforming growth factor \{beta\} (TGF-\{beta\}) target genes and distinguishes TGF-\{beta\}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol 25: 8108–8125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Kang JS, Derynck R . (2004). TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J 23: 1557–1566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma K, Chan JK, Zhu G, Wu Z . (2005). Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 25: 3575–3582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massague J, Gomis RR . (2006). The logic of TGFbeta signaling. FEBS Lett 580: 2811–2820.

    Article  CAS  PubMed  Google Scholar 

  • Mathew R, Khanna R, Kumar R, Mathur M, Shukla NK, Ralhan R . (2002). Stromelysin-2 overexpression in human esophageal squamous cell carcinoma: potential clinical implications. Cancer Detect Prev 26: 222–228.

    Article  CAS  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN . (2002). MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27: 40–47.

    Article  CAS  PubMed  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T . (1999). HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18: 5099–5107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyata Y, Iwata T, Maruta S, Kanda S, Nishikido M, Koga S et al. (2007). Expression of matrix metalloproteinase-10 in renal cell carcinoma and its prognostic role. Eur Urol 52: 791–797.

    Article  PubMed  Google Scholar 

  • Mori K, Asakawa M, Hayashi M, Imura M, Ohki T, Hirao E et al. (2006). Oligomerizing potential of a focal adhesion LIM protein Hic-5 organizing a nuclear-cytoplasmic shuttling complex. J Biol Chem 281: 22048–22061.

    Article  CAS  PubMed  Google Scholar 

  • Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH et al. (2004). Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64: 9002–9011.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Fujii Y, Ohuchi E, Yamamoto E, Okada Y . (1998). Activation of the precursor of human stromelysin 2 and its interactions with other matrix metalloproteinases. Eur J Biochem 253: 67–75.

    Article  CAS  PubMed  Google Scholar 

  • Nelson JD, Denisenko O, Bomsztyk K . (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc 1: 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Ornatsky OI, Cox DM, Tangirala P, Andreucci JJ, Quinn ZA, Wrana JL et al. (1999). Post-translational control of the MEF2A transcriptional regulatory protein. Nucleic Acids Res 27: 2646–2654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardali K, Moustakas A . (2007). Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775: 21–62.

    CAS  PubMed  Google Scholar 

  • Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M et al. (2001). Functional characterization of transforming growth factor beta signaling in Smad2- and Smad3-deficient fibroblasts. J Biol Chem 276: 19945–19953.

    Article  CAS  PubMed  Google Scholar 

  • Quinn ZA, Yang CC, Wrana JL, McDermott JC . (2001). Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins. Nucleic Acids Res 29: 732–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP . (1999). Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274: 13066–13076.

    Article  CAS  PubMed  Google Scholar 

  • Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, Ge Q et al. (2006). A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311: 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  • Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N et al. (1999). MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 18: 5085–5098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A . (2006). Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174: 175–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeks BH, He W, Olson KL, Wang XJ . (2001). Inducible expression of transforming growth factor beta1 in papillomas causes rapid metastasis. Cancer Res 61: 7435–7443.

    CAS  PubMed  Google Scholar 

  • Windsor LJ, Grenett H, Birkedal-Hansen B, Bodden MK, Engler JA, Birkedal-Hansen H . (1993). Cell type-specific regulation of SL-1 and SL-2 genes. Induction of the SL-2 gene but not the SL-1 gene by human keratinocytes in response to cytokines and phorbolesters. J Biol Chem 268: 17341–17347.

    CAS  PubMed  Google Scholar 

  • Yang SH, Galanis A, Sharrocks AD . (1999). Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 19: 4028–4038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F et al. (1999). Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 19: 21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Eric N Olson (University of Texas Southwestern Medical School, Dallas, TX, USA) for his generous gift of the MMP-10 promoter luciferase constructs. We also thank Ms E Kaneko and Ms T Kaneko for contributing to this work as a project for their bachelor's degree. This work was supported in part by a Grant-in-Aid for Scientific Research (C) (19570185) and the High-Technology Research Center Project from the Ministry for Education, Culture Sports, Science and Technology (MEXT) of Japan, and also by the High-Tech Research Centre Project for Private Universities: a matching fund subsidy from MEXT, 2007–2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Shibanuma.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, F., Miyoshi, H., Nose, K. et al. Transcriptional induction of MMP-10 by TGF-β, mediated by activation of MEF2A and downregulation of class IIa HDACs. Oncogene 29, 909–919 (2010). https://doi.org/10.1038/onc.2009.387

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.387

  • Springer Nature Limited

Keywords

This article is cited by

Navigation