Skip to main content

Advertisement

Log in

New p53 target, phosphatase of regenerating liver 1 (PRL-1) downregulates p53

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Most of the p53 target genes, all except MDM2, COP1 and PIRH2, perform functions in apoptosis, differentiation and cell cycle arrest. The aforementioned oncogenes downregulate p53 through a negative feedback mechanism, and thus contribute to tumor development. In this study, we report a new p53 target, PRL-1, which is believed to be a significant regulator in the development and metastasis of a variety of cancer types. Phosphatase of regenerating liver 1 (PRL-1) overexpression reduced the levels of endogenous and exogenous p53 proteins, and inhibited p53-mediated apoptosis. On the other hand, the ablation of PRL-1 by small interfering RNA (siRNA) increased p53 protein levels. The p53 downregulation was mediated by p53 ubiquitination and subsequent proteasomal degradation. Furthermore, p53 ubiquitination by PRL-1 was achieved through two independent pathways, by inducing PIRH2 transcription and by inducing MDM2 phosphorylation through Akt signaling. In addition, we showed that the PRL-1 gene harbors a p53 response element in the first intron, and its transcription is regulated by the p53 protein. These findings imply that the new oncogenic p53 target, PRL-1, may contribute to tumor development by the downregulation of p53 by a negative feedback mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Achiwa H, Lazo JS . (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Res 67: 643–650.

    Article  CAS  Google Scholar 

  • Balint EE, Vousden KH . (2001). Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85: 1813–1823.

    Article  CAS  PubMed Central  Google Scholar 

  • Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L et al. (1999). Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104: 263–269.

    Article  CAS  PubMed Central  Google Scholar 

  • Daoud SS, Munson PJ, Reinhold W, Young L, Prabhu VV, Yu Q et al. (2003). Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Res 63: 2782–2793.

    CAS  PubMed  Google Scholar 

  • Diamond RH, Cressman DE, Laz TM, Abrams CS, Taub R . (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 14: 3752–3762.

    Article  CAS  PubMed Central  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. (2004). The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429: 86–92.

    Article  CAS  Google Scholar 

  • Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D et al. (2004). Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 279: 35510–35517.

    Article  CAS  Google Scholar 

  • Fiordalisi JJ, Keller PJ, Cox AD . (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res 66: 3153–3161.

    Article  CAS  Google Scholar 

  • Gashler A, Sukhatme VP . (1995). Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog Nucleic Acid Res Mol Biol 50: 191–224.

    Article  CAS  Google Scholar 

  • Gius D, Cao XM, Rauscher III FJ, Cohen DR, Curran T, Sukhatme VP . (1990). Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol Cell Biol 10: 4243–4255.

    Article  CAS  PubMed Central  Google Scholar 

  • Huang J, Logsdon N, Schmieg FI, Simmons DT . (1998). p53-mediated transcription induces resistance of DNA to UV inactivation. Oncogene 17: 401–411.

    Article  CAS  Google Scholar 

  • Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN . (2005). Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24: 6719–6728.

    Article  CAS  Google Scholar 

  • Jung H, Seong HA, Ha H . (2007). NM23-H1 tumor suppressor and its interacting partner STRAP activate p53 function. J Biol Chem 282: 35293–35307.

    Article  CAS  Google Scholar 

  • Kim SB, Chae GW, Lee J, Park J, Tak H, Chung JH et al. (2007). Activated Notch1 interacts with p53 to inhibit its phosphorylation and transactivation. Cell Death Differ 14: 982–991.

    Article  Google Scholar 

  • Kobayashi D, Yamada M, Kamagata C, Kaneko R, Tsuji N, Nakamura M et al. (2002). Overexpression of early growth response-1 as a metastasis-regulatory factor in gastric cancer. Anticancer Res 22: 3963–3970.

    PubMed  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. (2003). Pirh2, a p53-induced ubiquitin–protein ligase, promotes p53 degradation. Cell 112: 779–791.

    Article  CAS  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . (2003). Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302: 1972–1975.

    Article  CAS  Google Scholar 

  • Liang F, Liang J, Wang WQ, Sun JP, Udho E, Zhang ZY . (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. J Biol Chem 282: 5413–5419.

    Article  CAS  Google Scholar 

  • McMahon SB, Monroe JG . (1996). The role of early growth response gene 1 (egr-1) in regulation of the immune response. J Leukoc Biol 60: 159–166.

    Article  CAS  Google Scholar 

  • Milne D, Kampanis P, Nicol S, Dias S, Campbell DG, Fuller-Pace F et al. (2004). A novel site of AKT-mediated phosphorylation in the human MDM2 onco-protein. FEBS Lett 577: 270–276.

    Article  CAS  Google Scholar 

  • Miskad UA, Semba S, Kato H, Yokozaki H . (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 71: 176–184.

    Article  CAS  Google Scholar 

  • Nair P, Muthukkumar S, Sells SF, Han SS, Sukhatme VP, Rangnekar VM . (1997). Early growth response-1-dependent apoptosis is mediated by p53. J Biol Chem 272: 20131–20138.

    Article  CAS  Google Scholar 

  • Parker BS, Argani P, Cook BP, Liangfeng H, Chartrand SD, Zhang M et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res 64: 7857–7866.

    Article  CAS  Google Scholar 

  • Qureshi SA, Rim M, Bruder J, Kolch W, Rapp U, Sukhatme VP et al. (1991). An inhibitory mutant of c-Raf-1 blocks v-Src-induced activation of the Egr-1 promoter. J Biol Chem 266: 20594–20597.

    CAS  PubMed  Google Scholar 

  • Resnick-Silverman L, St Clair S, Maurer M, Zhao K, Manfredi JJ . (1998). Identification of a novel class of genomic DNA-binding sites suggests a mechanism for selectivity in target gene activation by the tumor suppressor protein p53. Genes Dev 12: 2102–2107.

    Article  CAS  PubMed Central  Google Scholar 

  • Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science 294: 1343–1346.

    Article  CAS  Google Scholar 

  • Seong HA, Jung H, Ha H . (2007). NM23-H1 tumor suppressor physically interacts with serine-threonine kinase receptor-associated protein, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and negatively regulates TGF-beta signaling. J Biol Chem 282: 12075–12096.

    Article  CAS  Google Scholar 

  • Song MS, Song SJ, Ayad NG, Chang JS, Lee JH, Hong HK et al. (2004). The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6: 129–137.

    Article  CAS  Google Scholar 

  • Stephens BJ, Han H, Gokhale V, Von Hoff DD . (2005). PRL phosphatases as potential molecular targets in cancer. Mol Cancer Ther 4: 1653–1661.

    Article  CAS  Google Scholar 

  • Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q . (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Res 67: 2922–2926.

    Article  CAS  Google Scholar 

  • Wang Q, Holmes DI, Powell SM, Lu QL, Waxman J . (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Lett 175: 63–69.

    Article  CAS  Google Scholar 

  • Weizer-Stern O, Adamsky K, Margalit O, Ashur-Fabian O, Givol D, Amariglio N et al. (2007). Hepcidin, a key regulator of iron metabolism, is transcriptionally activated by p53. Br J Haematol 138: 253–262.

    Article  CAS  Google Scholar 

  • Werner SR, Lee PA, DeCamp MW, Crowell DN, Randall SK, Crowell PL . (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Lett 202: 201–211.

    Article  CAS  Google Scholar 

  • Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA . (2003). The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay–Wells syndrome-derived mutations. Mol Cell Biol 23: 2264–2276.

    Article  CAS  PubMed Central  Google Scholar 

  • Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 164: 2039–2054.

    Article  CAS  PubMed Central  Google Scholar 

  • Yoo YG, Lee MO . (2004). Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J Biol Chem 279: 36242–36249.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Sung Hyun Kang and Dr Kwang Hee Bae (KRIBB) for providing the FLAG-PRL-1. This work was supported by funding from the Ministry of Science and Technology of Korea (M1040101001-06N0101-00110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-J Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, SH., Kim, D., Heo, YS. et al. New p53 target, phosphatase of regenerating liver 1 (PRL-1) downregulates p53. Oncogene 28, 545–554 (2009). https://doi.org/10.1038/onc.2008.409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.409

  • Springer Nature Limited

Keywords

This article is cited by

Navigation