Skip to main content

Advertisement

Log in

Cyclin D1 in low-dose radiation-induced adaptive resistance

  • Original Article
  • Published:
Oncogene Submit manuscript

Abstract

Cyclin D1 is involved in cell-cycle arrest in DNA-damage response. This study tested the hypothesis that cyclin D1 regulates mitochondrial apoptosis. Cyclin D1 was induced by low-dose ionizing radiation (LDIR; 10-cGy X-ray) in human keratinocytes with an adaptive radioresistance that can be inhibited by short interfering RNA (siRNA)-mediated cyclin D1 inhibition. Cyclin D1 was found to form complex with chaperon 14-3-3ζ in unstressed cells and mutation of 14-3-3ζ Ser-58 to Asp (S58D) significantly impaired 14-3-3ζ binding to cyclin D1. The formation of cyclin D1/14-3-3ζ complex was differently regulated by exposure to low (10-cGy X-ray) versus high (5-Gy γ-ray) doses of radiation. Unlike exposure to 5-Gy that predominantly enhanced cyclin D1 nuclear accumulation, LDIR induced the dissociation of the cyclin D1/14-3-3ζ complex without nuclear translocation, indicating that cytosolic accumulation of cyclin D1 was required for LDIR-induced adaptive response. Further studies revealed a direct interaction of cyclin D1 with proapoptotic Bax and an improved mitochondrial membrane potential (Δψm) in LDIR-treated cells. Consistently, blocking cyclin D1/Bax formation by cyclin D1 siRNA reversed Δψm and inhibited the LDIR-associated antiapoptotic response. These results demonstrate the evidence that cytosolic cyclin D1 is able to regulate apoptosis by interaction with Bax in LDIR-induced adaptive resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

Δψm:

mitochondrial membrane potential

DAPI:

4,6-diamidino-2-phenylindole

EYFP:

enhanced yellow fluorescent protein

HDIR:

high-dose ionizing radiation

IHC:

immunohistochemistry

IR:

ionizing radiation

LDIR:

low-dose ionizing radiation

NP-40:

nonidet P-40

PMSF:

phenylmethylsulfonylfluoride

siRNA:

short interfering RNA

References

  • Ahmed KM, Dong S, Fan M, Li JJ . (2006). Nuclear factor κB P65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells. Mol Cancer Res 4: 945–955.

    Article  CAS  PubMed  Google Scholar 

  • Biliran Jr H, Wang Y, Banerjee S, Xu H, Heng H, Thakur A et al. (2005). Overexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 11: 6075–6086.

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shen B, Xia L, Khaletzkiy A, Chu D, Wong JY et al. (2002). Activation of nuclear factor kappaB in radioresistance of TP53-inactive human keratinocytes. Cancer Res 62: 1213–1221.

    CAS  PubMed  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G . (2000). Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92: 1042–1053.

    Article  CAS  PubMed  Google Scholar 

  • Daosukho C, Kiningham K, Kasarskis EJ, Ittarat W, St Clair DK . (2002). Tamoxifen enhancement of TNF-alpha induced MnSOD expression: modulation of NF-kappaB dimerization. Oncogene 21: 3603–3610.

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Ahmed KM, Coleman MC, Spitz DR, Li JJ . (2007). Nuclear factor-kappaB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells. Cancer Res 67: 3220–3228.

    Article  CAS  PubMed  Google Scholar 

  • Feinendegen LE, Bond VP, Sondhaus CA, Muehlensiepen H . (1996). Radiation effects induced by low doses in complex tissue and their relation to cellular adaptive responses. Mutat Res 358: 199–205.

    Article  PubMed  Google Scholar 

  • Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J et al. (2003). Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol 23: 2362–2378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 Sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Hu CD, Chinenov Y, Kerppola TK . (2002). Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9: 789–798.

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ . (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443: 658–662.

    Article  CAS  PubMed  Google Scholar 

  • Kelsey KT, Memisoglu A, Frenkel D, Liber HL . (1991). Human lymphocytes exposed to low doses of X-rays are less susceptible to radiation-induced mutagenesis. Mutat Res 263: 197–201.

    Article  CAS  PubMed  Google Scholar 

  • Klokov D, Criswell T, Leskov KS, Araki S, Mayo L, Boothman DA . (2004). IR-inducible clusterin gene expression: a protein with potential roles in ionizing radiation-induced adaptive responses, genomic instability, and bystander effects. Mutat Res 568: 97–110.

    Article  CAS  PubMed  Google Scholar 

  • Limoli CL, Kaplan MI, Giedzinski E, Morgan WF . (2001). Attenuation of radiation-induced genomic instability by free radical scavengers and cellular proliferation. Free Radic Biol Med 31: 10–19.

    Article  CAS  PubMed  Google Scholar 

  • Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H et al. (2003). 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 278: 2058–2065.

    Article  CAS  PubMed  Google Scholar 

  • Oyama T, Kashiwabara K, Yoshimoto K, Arnold A, Koerner F . (1998). Frequent overexpression of the cyclin D1 oncogene in invasive lobular carcinoma of the breast. Cancer Res 58: 2876–2880.

    CAS  PubMed  Google Scholar 

  • Pandey BN, Gordon DM, De Toledo SM, Pain D, Azzam EI . (2006). Normal human fibroblasts exposed to high- or low-dose ionizing radiation: differential effects on mitochondrial protein import and membrane potential. Antioxid Redox Signal 8: 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  • Paulovich AG, Toczyski DP, Hartwell LH . (1997). When checkpoints fail. Cell 88: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Powell DW, Rane MJ, Joughin BA, Kalmukova R, Hong JH, Tidor B et al. (2003). Proteomic identification of 14-3-3zeta as a mitogen-activated protein kinase-activated protein kinase 2 substrate: role in dimer formation and ligand binding. Mol Cell Biol 23: 5376–5387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi W, Martinez JD . (2003). Reduction of 14-3-3 proteins correlates with increased sensitivity to killing of human lung cancer cells by ionizing radiation. Radiat Res 160: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Rothkamm K, Lobrich M . (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100: 5057–5062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamaki T, Casimiro MC, Ju X, Quong AA, Katiyar S, Liu M et al. (2006). Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 26: 5449–5469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadley JD, Afzal V, Wolff S . (1987). Characterization of the adaptive response to ionizing radiation induced by low doses of X rays to human lymphocytes. Radiat Res 111: 511–517.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (1994). G1 phase progression: cycling on cue. Cell 79: 551–555.

    Article  CAS  PubMed  Google Scholar 

  • Sumrejkanchanakij P, Tamamori-Adachi M, Matsunaga Y, Eto K, Ikeda MA . (2003). Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22: 8723–8730.

    Article  CAS  PubMed  Google Scholar 

  • Ulsh BA, Miller SM, Mallory FF, Mitchel RE, Morrison DP, Boreham DR . (2004). Cytogenetic dose–response and adaptive response in cells of ungulate species exposed to ionizing radiation. J Environ Radioact 74: 73–81.

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Hu YC, Dong S, Fan M, Tamae D, Ozeki M et al. (2005). Co-activation of ERK, NF-kappaB, and GADD45beta in response to ionizing radiation. J Biol Chem 280: 12593–12601.

    Article  CAS  PubMed  Google Scholar 

  • Xiao B, Smerdon SJ, Jones DH, Dodson GG, Soneji Y, Aitken A et al. (1995). Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature 376: 188–191.

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J et al. (1997). Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275: 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y . (2005). JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat Cell Biol 7: 278–285.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B . (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290: 989–992.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr N Colburn (National Cancer Institute, NIH) for providing human keratinocytes HK18 cells, Dr S Liu (Purdue University School of Health Sciences) for invaluable help with animal experiments. This work was supported by NIH NCI grant RO1 101990 and the Department of Energy grant DE-FG02-03ER63634 to JJL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, K., Fan, M., Nantajit, D. et al. Cyclin D1 in low-dose radiation-induced adaptive resistance. Oncogene 27, 6738–6748 (2008). https://doi.org/10.1038/onc.2008.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.265

  • Springer Nature Limited

Keywords

This article is cited by

Navigation