Skip to main content
Log in

The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α

  • Article
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Abstract

Addition of N-acetylglucosamine (GlcNAc) is a ubiquitous form of intracellular glycosylation catalyzed by the conserved O-linked GlcNAc transferase (OGT). OGT contains an N-terminal domain of tetratricopeptide (TPR) repeats that mediates the recognition of a broad range of target proteins. Components of the nuclear pore complex are major OGT targets, as OGT depletion by RNA interference (RNAi) results in the loss of GlcNAc modification at the nuclear envelope. To gain insight into the mechanism of target recognition, we solved the crystal structure of the homodimeric TPR domain of human OGT, which contains 11.5 TPR repeats. The repeats form an elongated superhelix. The concave surface of the superhelix is lined by absolutely conserved asparagines, in a manner reminiscent of the peptide-binding site of importin α. Based on this structural similarity, we propose that OGT uses an analogous molecular mechanism to recognize its targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Nucleoporins are major OGT targets.
Figure 2: Structure of the homodimeric TPR domain of human OGT.
Figure 3: The contiguous TPR repeats form a regular superhelical architecture.
Figure 4: The outer face of the TPR superhelix mediates homodimerization of OGT.
Figure 5: The inner surface of the TPR superhelix features a ladder of asparagines.
Figure 6: The inner surface of the TPR superhelix is similar to the peptide-binding surface of importin α.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hanover, J.A. Glycan-dependent signaling: O-linked N-acetylglucosamine. FASEB J. 15, 1865–1876 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Wells, L., Vosseller, K. & Hart, G.W. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376–2378 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Kearse, K.P. & Hart, G.W. Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins. Proc. Natl. Acad. Sci. USA 88, 1701–1705 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chou, T.Y., Hart, G.W. & Dang, C.V. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J. Biol. Chem. 270, 18961–18965 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Slawson, C. & Hart, G.W. Dynamic interplay between O-GlcNAc and O-phosphate: the sweet side of protein regulation. Curr. Opin. Struct. Biol. 13, 631–636 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanover, J.A., Cohen, C.K., Willingham, M.C. & Park, M.K. O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins. J. Biol. Chem. 262, 9887–9894 (1987).

    CAS  PubMed  Google Scholar 

  8. Wells, L., Whalen, S.A. & Hart, G.W. O-GlcNAc: a regulatory post-translational modification. Biochem. Biophys. Res. Com. 302, 435–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Yang, X. et al. O-linkage of N-acetylglucosamine to Sp1 activation domain inhibits its transcriptional capability. Proc. Natl. Acad. Sci. USA 98, 6611–6616 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Shafi, R. et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA 97, 5735–5739 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lubas, W.A. & Hanover, J.A. Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 275, 10983–10988 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Iyer, S.P. & Hart, G.W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem. 278, 24608–24616 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Kreppel, L.K. & Hart, G.W. Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, X., Zhang, F. & Kudlow, J.E. Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110, 69–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. D'Andrea, L.D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Sikorski, R.S., Boguski, M.S., Goebl, M. & Hieter, P. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60, 307–317 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Das, A.K., Cohen, P.W. & Barford, D. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions. EMBO J. 17, 1192–1199 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gatto, G.J. Jr., Geisbrecht, B.V., Gould, S.J. & Berg, J.M. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat. Struct. Biol. 7, 1091–1095 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Lapouge, K. et al. Structure of the TPR domain of p67phox in complex with Rac.GTP. Mol. Cell 6, 899–907 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Scheufler, C. et al. Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 101, 199–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Lubas, W.A., Smith, M., Starr, C.M. & Hanover, J.A. Analysis of nuclear pore protein p62 glycosylation. Biochemistry 34, 1686–1694 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Herold, A., Klymenko, T. & Izaurralde, E. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA 7, 1768–1780 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Taylor, P. et al. Two structures of cyclophilin 40: folding and fidelity in the TPR domains. Structure 9, 431–438 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, A. et al. An unexpected extended conformation for the third TPR motif of the peroxin PEX5 from Trypanosoma brucei. J. Mol. Biol. 307, 271–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Cingolani, G., Petosa, C., Weis, K. & Muller, C.W. Structure of importin-β bound to the IBB domain of importin-α. Nature 399, 221–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, S.J. et al. The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571–1575 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Fukuhara, N., Fernandez, E., Ebert, J., Conti, E. & Svergun, D. Conformational variability of nucleo-cytoplasmic transport factors. J. Biol. Chem. 279, 2176–2181 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Huber, A.H. & Weis, W.I. The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391–402 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Conti, E., Uy, M., Leighton, L., Blobel, G. & Kuriyan, J. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94, 193–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Young, J.C., Hoogenraad, N.J. & Hartl, F.U. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Fontes, M.R., Teh, T. & Kobe, B. Structural basis of recognition of monopartite and bipartite nuclear localization sequences by mammalian importin-α. J. Mol. Biol. 297, 1183–1194 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Conti, E. & Kuriyan, J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin α. Structure Fold. Des. 8, 329–338 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  37. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kleywegt, G.J. & Read, R.J. Not your average density. Structure 5, 1557–1569 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard . Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  41. Brünger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  42. Brünger, A. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to beamline scientists of X06SA at the Swiss Light Source (Zürich) and ESRF ID14-2 (Grenoble) for assistance during data collection. We thank M. Hothorn for introduction to data processing with XDS and P. Brick for critical reading of the manuscript. M.J. was supported by the Human Frontier Science Program Organization (RGP0063/2002-C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Conti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Nucleoporins are major OGT substrates in vivo. (PDF 734 kb)

Supplementary Methods (PDF 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jínek, M., Rehwinkel, J., Lazarus, B. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nat Struct Mol Biol 11, 1001–1007 (2004). https://doi.org/10.1038/nsmb833

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb833

  • Springer Nature America, Inc.

This article is cited by

Navigation