Skip to main content
Log in

New functions for an ancient domain

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Macrodomains function as binding modules for metabolites of NAD+, including poly(ADP-ribose). Three new studies explore how binding of poly(ADP-ribose) by the macrodomains of histone variant macroH2A1.1 and the ATP-dependent chromatin-remodeling protein ALC1 (also called CHD1L) leads to the modulation of chromatin structure, regulating nuclear functions such as DNA-damage detection and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Macrodomains bind metabolites of NAD+.
Figure 2: Macrodomain-containing proteins in humans.
Figure 3: Macrodomains are ancient and highly conserved structural domains that bind metabolites of NAD+.

References

  1. Ladurner, A.G. Mol. Cell 12, 1–3 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Pehrson, J.R. & Fuji, R.N. Nucleic Acids Res. 26, 2837–2842 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karras, G.I. et al. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kustatscher, G., Hothorn, M., Pugieux, C., Scheffzek, K. & Ladurner, A.G. Nat. Struct. Mol. Biol. 12, 624–625 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Neuvonen, M. & Ahola, T. J. Mol. Biol. 385, 212–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Hakme, A., Wong, H.K., Dantzer, F. & Schreiber, V. EMBO Rep. 9, 1094–1100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, M.Y., Zhang, T. & Kraus, W.L. Genes Dev. 19, 1951–1967 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Timinszky, G. et al. Nat. Struct. Mol. Biol. 16, 923–929 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Gottschalk, A.J. et al. Proc. Natl. Acad. Sci. USA, published online doi:10.1073/pnas.0906920106 (6 August 2009).

  10. Ahel, D. et al. Science, published online doi: 10.1126/science.1177321 (6 August 2009).

  11. Pehrson, J.R. & Fried, V.A. Science 257, 1398–1400 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Allen, M.D., Buckle, A.M., Cordell, S.C., Lowe, J. & Bycroft, M. J. Mol. Biol. 330, 503–511 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Martzen, M.R. et al. Science 286, 1153–1155 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Ame, J.C., Spenlehauer, C. & de Murcia, G. Bioessays 26, 882–893 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T. & Kraus, W.L. Cell 119, 803–814 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Krishnakumar, R. et al. Science 319, 819–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kraus, W.L. Curr. Opin. Cell Biol. 20, 294–302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ahel, I. et al. Nature 451, 81–85 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Gagne, J.P. et al. Nucleic Acids Res. 36, 6959–6976 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pleschke, J.M., Kleczkowska, H.E., Strohm, M. & Althaus, F.R. J. Biol. Chem. 275, 40974–40980 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Rulten, S.L., Cortes-Ledesma, F., Guo, L., Iles, N.J. & Caldecott, K.W. Mol. Cell. Biol. 28, 4620–4628 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nusinow, D.A. et al. J. Biol. Chem. 282, 12851–12859 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Ouararhni, K. et al. Genes Dev. 20, 3324–3336 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Doyen, C.M. et al. Mol. Cell. Biol. 26, 1156–1164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Angelov, D. et al. Mol. Cell 11, 1033–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Agelopoulos, M. & Thanos, D. EMBO J. 25, 4843–4853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wacker, D.A. et al. Mol. Cell. Biol. 27, 7475–7485 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen-Armon, M. et al. Mol. Cell 25, 297–308 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Changolkar, L.N. et al. Mol. Cell. Biol. 27, 2758–2764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Costanzi, C. & Pehrson, J.R. J. Biol. Chem. 276, 21776–21784 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Pehrson, J.R., Costanzi, C. & Dharia, C. J. Cell. Biochem. 65, 107–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Flaus, A., Martin, D.M., Barton, G.J. & Owen-Hughes, T. Nucleic Acids Res. 34, 2887–2905 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank C. Danko for assistance with the bioinformatics analysis of the macrodomain-containing proteins (Fig. 2), and N. Hah and J. Seckute for assistance with rendering the X-ray crystal structures (Fig. 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Lee Kraus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, W. New functions for an ancient domain. Nat Struct Mol Biol 16, 904–907 (2009). https://doi.org/10.1038/nsmb0909-904

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0909-904

  • Springer Nature America, Inc.

This article is cited by

Navigation