Skip to main content
Log in

Simplifying a complex code

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Methylated lysines are essential components of the network of histone modifications, or 'histone code', that regulates gene expression. Work on the methyltransferase Dot1 shows how modifications on different histones interact to modulate activity and how its catalytic mechanism is matched to its role in genome regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: How histone modifications regulate Sir3 binding and Dot1 catalysis.

References

  1. Turner, B.M. Nat. Cell Biol. 9, 2–6 (2007).

    Article  CAS  Google Scholar 

  2. Taverna, S.D., Li, H., Ruthenburg, A.J., Allis, C.D. & Patel, D.J. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  3. Frederiks, F.T.M. et al. Nat. Struct. Mol. Biol. 15, 550–557 (2008).

    Article  CAS  Google Scholar 

  4. McGinty R.K., Jaehoon, K., Chatterjee, C., Roeder, R.G. & Muir, T.W. Nature advance online publication 30 April 2008 (doi:10.1038/nature06906).

    Article  CAS  Google Scholar 

  5. Ng, H.H. et al. Genes Dev. 16, 1518–1527 (2002).

    Article  CAS  Google Scholar 

  6. van Leeuwen, F., Gafken, P.R. & Gottschling, D.E. Cell 109, 745–756 (2002).

    Article  CAS  Google Scholar 

  7. Carmen, A.A., Milne, L. & Grunstein, M. J. Biol. Chem. 277, 4778–4781 (2002).

    Article  CAS  Google Scholar 

  8. Altaf, M. et al. Mol. Cell 28, 1002–1014 (2007).

    Article  CAS  Google Scholar 

  9. Fingerman, I.M., Li, H.C. & Briggs, S.D. Genes Dev. 21, 2018–2029 (2007).

    Article  CAS  Google Scholar 

  10. Krogan, N.J. et al. Mol. Cell 11, 721–729 (2003).

    Article  CAS  Google Scholar 

  11. Lee, J.S. et al. Cell 131, 1084–1096 (2007).

    Article  CAS  Google Scholar 

  12. Ezhkova, E. & Tansey, W.P. Mol. Cell 13, 435–442 (2004).

    Article  CAS  Google Scholar 

  13. Ng, H.H., Xu, R.M., Zhang, Y. & Struhl, K. J. Biol. Chem. 277, 34655–34657 (2002).

    Article  CAS  Google Scholar 

  14. Botuyan, M.V. et al. Cell 127, 1361–1373 (2006).

    Article  CAS  Google Scholar 

  15. Shi, Y. & Whetstine, J.R. Mol. Cell 25, 1–14 (2007).

    Article  CAS  Google Scholar 

  16. Shahbazian, M.D., Zhang, K. & Grunstein, M. Mol. Cell 19, 271–277 (2005).

    Article  CAS  Google Scholar 

  17. Dou, Y. et al. Nat. Struct. Mol. Biol. 13, 713–719 (2006).

    Article  CAS  Google Scholar 

  18. Nightingale, K.P. et al. J. Biol. Chem. 282, 4408–4416 (2007).

    Article  CAS  Google Scholar 

  19. Sawada, K. et al. J. Biol. Chem. 279, 43296–43306 (2004).

    Article  CAS  Google Scholar 

  20. Janzen, C.J., Hake, S.B., Lowell, J.E. & Cross, G.A. Mol. Cell 23, 497–507 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, B. Simplifying a complex code. Nat Struct Mol Biol 15, 542–544 (2008). https://doi.org/10.1038/nsmb0608-542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb0608-542

  • Springer Nature America, Inc.

This article is cited by

Navigation