Skip to main content
Log in

Oocyte-derived histone H3 lysine 27 methylation controls gene expression in the early embryo

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

The monoallelic expression of many imprinted genes in mammals depends on DNA methylation marks that originate from the germ cells. Recent studies in mice and fruit flies evoke a novel, transient mode of genomic imprinting in which oocyte-acquired histone H3 Lys27 trimethylation (H3K27me3) marks are transmitted to the zygote and modulate the allele specificity and timing of gene expression in the early embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Chromosomal regions acquire different epigenetic states in mouse oocytes.
Figure 2: Oocyte-acquired imprints induce different chromatin organizations in the mouse embryo.

References

  1. Feil, R. & Berger, F. Trends Genet. 23, 192–199 (2007).

    Article  CAS  Google Scholar 

  2. Kelsey, G. & Feil, R. Phil. Trans. R. Soc. Lond. B 368, 20110336 (2013).

    Article  Google Scholar 

  3. Okae, H. et al. Hum. Mol. Genet. 21, 548–558 (2012).

    Article  CAS  Google Scholar 

  4. Okae, H. et al. Hum. Mol. Genet. 23, 992–1001 (2014).

    Article  CAS  Google Scholar 

  5. Henckel, A. et al. Hum. Mol. Genet. 18, 3375–3383 (2009).

    Article  CAS  Google Scholar 

  6. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Nature 547, 419–424 (2017).

    Article  CAS  Google Scholar 

  7. Zenk, F. et al. Science 357, 212–216 (2017).

    Article  CAS  Google Scholar 

  8. Zheng, H. et al. Mol. Cell 63, 1066–1079 (2016).

    Article  CAS  Google Scholar 

  9. Erhardt, S. et al. Development 130, 4235–4248 (2003).

    Article  CAS  Google Scholar 

  10. Burton, A. & Torres-Padilla, M.E. Nat. Rev. Mol. Cell Biol. 15, 723–734 (2014).

    Article  CAS  Google Scholar 

  11. Greenberg, M.V. et al. Nat. Genet. 49, 110–118 (2017).

    Article  CAS  Google Scholar 

  12. Auclair, G. et al. Genome Res. 26, 192–202 (2016).

    Article  CAS  Google Scholar 

  13. Miri, K. et al. Development 140, 4480–4489 (2013).

    Article  CAS  Google Scholar 

  14. Moreno-Romero, J., Jiang, H., Santos-González, J. & Köhler, C. EMBO J. 35, 1298–1311 (2016).

    Article  CAS  Google Scholar 

  15. Voon, H.P. et al. Cell Rep. 11, 405–418 (2015).

    Article  CAS  Google Scholar 

  16. Renfree, M.B., Suzuki, S. & Kaneko-Ishino, T. Phil. Trans. R. Soc. Lond. B 368, 20120151 (2013).

    Article  Google Scholar 

  17. Sanchez-Delgado, M. et al. PLoS Genet. 12, e1006427 (2016).

    Article  Google Scholar 

  18. Takagi, N. Semin. Cell Dev. Biol. 14, 319–329 (2003).

    Article  CAS  Google Scholar 

  19. Sado, T., Okano, M., Li, E. & Sasaki, H. Development 131, 975–982 (2004).

    Article  CAS  Google Scholar 

  20. Khosla, S., Mendiratta, G. & Brahmachari, V. Cytogenet. Genome Res. 113, 41–52 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Feil.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, R., Feil, R. Oocyte-derived histone H3 lysine 27 methylation controls gene expression in the early embryo. Nat Struct Mol Biol 24, 685–686 (2017). https://doi.org/10.1038/nsmb.3456

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3456

  • Springer Nature America, Inc.

This article is cited by

Navigation