Skip to main content
Log in

Remodelers tap into nucleosome plasticity

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Chromatin-remodeling enzymes perform the formidable task of reorganizing the structure of a stable macromolecular assembly, the nucleosome. Recently published work demonstrates that the SNF2H chromatin remodeler distorts the histone octamer structure upon binding to the nucleosome, then taps into this induced plasticity to productively achieve nucleosome sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A model for the role of histone octamer distortion in nucleosome sliding.

References

  1. Luger, K., Mäder, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  2. Sinha, K.K., Gross, J.D. & Narlikar, G.J. Science 355, eaaa3761 (2017).

    Article  Google Scholar 

  3. Deindl, S. et al. Cell 152, 442–452 (2013).

    Article  CAS  Google Scholar 

  4. Hwang, W.L., Deindl, S., Harada, B.T. & Zhuang, X. Nature 512, 213–217 (2014).

    Article  CAS  Google Scholar 

  5. Rosenzweig, R. & Kay, L.E. Annu. Rev. Biochem. 83, 291–315 (2014).

    Article  CAS  Google Scholar 

  6. Dang, W., Kagalwala, M.N. & Bartholomew, B. Mol. Cell. Biol. 26, 7388–7396 (2006).

    Article  CAS  Google Scholar 

  7. Clapier, C.R. & Cairns, B.R. Nature 492, 280–284 (2012).

    Article  CAS  Google Scholar 

  8. Racki, L.R. et al. J. Mol. Biol. 426, 2034–2044 (2014).

    Article  CAS  Google Scholar 

  9. Kato, H. et al. Proc. Natl. Acad. Sci. USA 108, 12283–12288 (2011).

    Article  CAS  Google Scholar 

  10. Singh, H.R. & Ladurner, A.G. Mol. Cell 55, 345–346 (2014).

    Article  CAS  Google Scholar 

  11. Clapier, C.R. & Cairns, B.R. Annu. Rev. Biochem. 78, 273–304 (2009).

    Article  CAS  Google Scholar 

  12. Erdel, F. & Rippe, K. Nucleus 2, 105–112 (2011).

    Article  Google Scholar 

  13. Erdel, F. & Rippe, K. FEBS J. 278, 3608–3618 (2011).

    Article  CAS  Google Scholar 

  14. Hauk, G., McKnight, J.N., Nodelman, I.M. & Bowman, G.D. Mol. Cell 39, 711–723 (2010).

    Article  CAS  Google Scholar 

  15. VanDemark, A.P. et al. Mol. Cell 27, 817–828 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the Deutsche Forschungsgemeinschaft (SFB 646 and 1064 to A.G.L.; SFB 1064 to H.R.S.) and from the European Commission (Marie Skłodowska Curie Individual Fellowship 'SilentFACT' and H2020-MSCA-IF-2014 contract 657244 to M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas G Ladurner.

Ethics declarations

Competing interests

A.G.L. is on the Scientific Advisory Board of VolitionRx, Inc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Murawska, M. & Ladurner, A. Remodelers tap into nucleosome plasticity. Nat Struct Mol Biol 24, 341–343 (2017). https://doi.org/10.1038/nsmb.3394

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3394

  • Springer Nature America, Inc.

This article is cited by

Navigation