Skip to main content
Log in

Retrotransposons jump into alternative-splicing regulation via a long noncoding RNA

  • News & Views
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

A conserved long noncoding RNA expressed at the 5S rDNA ribosomal locus has acquired a novel function in alternative-splicing regulation in primates, owing to the insertion of a mobile Alu element. This discovery opens new perspectives regarding the roles of transposable elements in expanding the human transcriptome and may be applied as a biotechnology tool to drive gene-specific changes in alternative splicing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: A primate-specific role of the lncRNA 5S-OT in transcription and alternative splicing.
Figure 2: Targeted modulation of alternative splicing by adapting the h5S-OT sequence.

References

  1. Wilusz, J.E., Sunwoo, H. & Spector, D.L. Genes Dev. 23, 1494–1504 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Ule, J. Biochem. Soc. Trans. 41, 1532–1535 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Hu, S.W. Nat. Struct. Mol. Biol. 23, 1011–1019 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Nielsen, J.N., Hallenberg, C., Frederiksen, S., Sø rensen, P.D. & Lomholt, B. Nucleic Acids Res. 21, 3631–3636 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Sørensen, P.D. & Frederiksen, S. Nucleic Acids Res. 19, 4147–4151 (1991).

    Article  PubMed  Google Scholar 

  6. Häsler, J. & Strub, K. Nucleic Acids Res. 34, 5491–5497 (2006).

    Article  PubMed  Google Scholar 

  7. Sorek, R., Ast, G. & Graur, D. Genome Res. 12, 1060–1067 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Shao, C. et al. Nat. Struct. Mol. Biol. 21, 997–1005 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Osman, E.Y., Yen, P.F. & Lorson, C.L. Mol. Ther. 20, 119–126 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Brosseau, J.P. et al. Nucleic Acids Res. 42, e40 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Hua, Y. et al. Genes Dev. 29, 288–297 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Nelles, D.A. et al. Cell 165, 488–496 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Abudayyeh, O.O. et al. Science 353, aaf5573 (2016).

    Article  PubMed  Google Scholar 

  14. Gilbert, L.A. et al. Cell 154, 442–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Tripathi, V. et al. Mol. Cell 39, 925–938 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez, I. et al. Nat. Struct. Mol. Biol. 22, 370–376 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, K.C. & Chang, H.Y. Mol. Cell 43, 904–914 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, G.S. & Cooper, T.A. Nat. Rev. Genet. 8, 749–761 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reini F Luco.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luco, R. Retrotransposons jump into alternative-splicing regulation via a long noncoding RNA. Nat Struct Mol Biol 23, 952–954 (2016). https://doi.org/10.1038/nsmb.3318

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3318

  • Springer Nature America, Inc.

This article is cited by

Navigation