Skip to main content
Log in

Long single α-helical tail domains bridge the gap between structure and function of myosin VI

  • Article
  • Published:

From Nature Structural & Molecular Biology

View current issue Submit your manuscript

Abstract

Myosin VI has challenged the lever arm hypothesis of myosin movement because of its ability to take ∼36-nm steps along actin with a canonical lever arm that seems to be too short to allow such large steps. Here we demonstrate that the large step of dimeric myosin VI is primarily made possible by a medial tail in each monomer that forms a rare single α-helix of ∼10 nm, which is anchored to the calmodulin-bound IQ domain by a globular proximal tail. With the medial tail contributing to the ∼36-nm step, rather than dimerizing as previously proposed, we show that the cargo binding domain is the dimerization interface. Furthermore, the cargo binding domain seems to be folded back in the presence of the catalytic head, constituting a potential regulatory mechanism that inhibits dimerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: M6 tail domains and experimental constructs.
Figure 2: CD spectra for the PT and MT-DT domains.
Figure 3: SAXS envelope reconstructions of tail domains.
Figure 4: Motility assays for the MT locked mutant compared to control M6 dimer.
Figure 5: SAXS envelope and models for full-length myosin VI.
Figure 6: A scale model of a M6 dimer moving along an actin filament.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rock, R.S. et al. Myosin VI is a processive motor with a large step size. Proc. Natl. Acad. Sci. USA 98, 13655–13659 (2001).

    Article  CAS  Google Scholar 

  2. Nishikawa, S. et al. Class VI myosin moves processively along actin filaments backward with large steps. Biochem. Biophys. Res. Commun. 290, 311–317 (2002).

    Article  CAS  Google Scholar 

  3. Altman, D., Sweeney, H.L. & Spudich, J.A. The mechanism of myosin VI translocation and its load-induced anchoring. Cell 116, 737–749 (2004).

    Article  CAS  Google Scholar 

  4. Wells, A.L. et al. Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–508 (1999).

    Article  CAS  Google Scholar 

  5. Menetrey, J. et al. The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–785 (2005).

    Article  CAS  Google Scholar 

  6. Bryant, Z., Altman, D. & Spudich, J.A. The power stroke of myosin VI and the basis of reverse directionality. Proc. Natl. Acad. Sci. USA 104, 772–777 (2007).

    Article  CAS  Google Scholar 

  7. Park, H. et al. The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc. Natl. Acad. Sci. USA 104, 778–783 (2007).

    Article  CAS  Google Scholar 

  8. Okten, Z., Churchman, L.S., Rock, R.S. & Spudich, J.A. Myosin VI walks hand-over-hand along actin. Nat. Struct. Mol. Biol. 11, 884–887 (2004).

    Article  Google Scholar 

  9. Yildiz, A. et al. Myosin VI steps via a hand-over-hand mechanism with its lever arm undergoing fluctuations when attached to actin. J. Biol. Chem. 279, 37223–37226 (2004).

    Article  CAS  Google Scholar 

  10. Balci, H., Ha, T., Sweeney, H.L. & Selvin, P.R. Interhead distance measurements in myosin VI via SHRImP support a simplified hand-over-hand model. Biophys. J. 89, 413–417 (2005).

    Article  CAS  Google Scholar 

  11. Ali, M.Y. et al. Unconstrained steps of myosin VI appear longest among known molecular motors. Biophys. J. 86, 3804–3810 (2004).

    Article  CAS  Google Scholar 

  12. Mehta, A.D. et al. Myosin-V is a processive actin-based motor. Nature 400, 590–593 (1999).

    Article  CAS  Google Scholar 

  13. Purcell, T.J., Morris, C., Spudich, J.A. & Sweeney, H.L. Role of the lever arm in the processive stepping of myosin V. Proc. Natl. Acad. Sci. USA 99, 14159–14164 (2002).

    Article  CAS  Google Scholar 

  14. Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R. & Molloy, J.E. The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65 (2002).

    Article  CAS  Google Scholar 

  15. Bahloul, A. et al. The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc. Natl. Acad. Sci. USA 101, 4787–4792 (2004).

    Article  CAS  Google Scholar 

  16. Spudich, J.A. The myosin swinging cross-bridge model. Nat. Rev. Mol. Cell Biol. 2, 387–392 (2001).

    Article  CAS  Google Scholar 

  17. Shih, W.M., Gryczynski, Z., Lakowicz, J.R. & Spudich, J.A. A FRET-based sensor reveals large ATP hydrolysis-induced conformational changes and three distinct states of the molecular motor myosin. Cell 102, 683–694 (2000).

    Article  CAS  Google Scholar 

  18. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Three-dimensional structural dynamics of myosin V by single-molecule fluorescence polarization. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  19. Menetrey, J., Llinas, P., Mukherjea, M., Sweeney, H.L. & Houdusse, A. The structural basis for the large powerstroke of myosin VI. Cell 131, 300–308 (2007).

    Article  CAS  Google Scholar 

  20. Rock, R.S. et al. A flexible domain is essential for the large step size and processivity of myosin VI. Mol. Cell 17, 603–609 (2005).

    Article  CAS  Google Scholar 

  21. Knight, P.J. et al. The predicted coiled-coil domain of myosin 10 forms a novel elongated domain that lengthens the head. J. Biol. Chem. 280, 34702–34708 (2005).

    Article  CAS  Google Scholar 

  22. Lister, I. et al. A monomeric myosin VI with a large working stroke. EMBO J. 23, 1729–1738 (2004).

    Article  CAS  Google Scholar 

  23. Altman, D., Goswami, D., Hasson, T., Spudich, J.A. & Mayor, S. Precise positioning of myosin VI on endocytic vesicles in vivo. PLoS Biol. 5, e210 (2007).

    Article  Google Scholar 

  24. Spudich, G. et al. Myosin VI targeting to clathrin-coated structures and dimerization is mediated by binding to Disabled-2 and PtdIns(4,5)P2. Nat. Cell Biol. 9, 176–183 (2007).

    Article  CAS  Google Scholar 

  25. Park, H. et al. Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol. Cell 21, 331–336 (2006).

    Article  CAS  Google Scholar 

  26. Berger, B. et al. Predicting coiled coils by use of pairwise residue correlations. Proc. Natl. Acad. Sci. USA 92, 8259–8263 (1995).

    Article  CAS  Google Scholar 

  27. Uversky, V.N. Natively unfolded proteins: a point where biology waits for physics. Protein Sci. 11, 739–756 (2002).

    Article  CAS  Google Scholar 

  28. Bonneau, R. et al. De novo prediction of three-dimensional structures for major protein families. J. Mol. Biol. 322, 65–78 (2002).

    Article  CAS  Google Scholar 

  29. Marqusee, S. & Baldwin, R.L. Helix stabilization by Glu-...Lys+ salt bridges in short peptides of de novo design. Proc. Natl. Acad. Sci. USA 84, 8898–8902 (1987).

    Article  CAS  Google Scholar 

  30. O'Shea, E.K., Rutkowski, R. & Kim, P.S. Evidence that the leucine zipper is a coiled coil. Science 243, 538–542 (1989).

    Article  CAS  Google Scholar 

  31. Zaman, M.H., Berry, R.S. & Sosnick, T.R. Entropic benefit of a cross-link in protein association. Proteins 48, 341–351 (2002).

    Article  CAS  Google Scholar 

  32. Rock, R.S., Rief, M., Mehta, A.D. & Spudich, J.A. In vitro assays of processive myosin motors. Methods 22, 373–381 (2000).

    Article  CAS  Google Scholar 

  33. Lin, H.P. et al. Cell adhesion molecule Echinoid associates with unconventional myosin VI/Jaguar motor to regulate cell morphology during dorsal closure in Drosophila. Dev. Biol. 311, 423–433 (2007).

    Article  CAS  Google Scholar 

  34. Wang, E. & Wang, C.L. (i, i + 4) Ion pairs stabilize helical peptides derived from smooth muscle caldesmon. Arch. Biochem. Biophys. 329, 156–162 (1996).

    Article  CAS  Google Scholar 

  35. Kuhlman, B., Yang, H.Y., Boice, J.A., Fairman, R. & Raleigh, D.P. An exceptionally stable helix from the ribosomal protein L9: implications for protein folding and stability. J. Mol. Biol. 270, 640–647 (1997).

    Article  CAS  Google Scholar 

  36. Howard, J. Mechanics of Motor Proteins and the Cytoskeleton Vol. xvi 367 (Sinauer Associates, Sunderland, 2001).

    Google Scholar 

  37. Idiris, A., Alam, M.T. & Ikai, A. Spring mechanics of α-helical polypeptide. Protein Eng. 13, 763–770 (2000).

    Article  CAS  Google Scholar 

  38. Zagrovic, B., Jayachandran, G., Millett, I.S., Doniach, S. & Pande, V.S. How large is an α-helix? Studies of the radii of gyration of helical peptides by small-angle X-ray scattering and molecular dynamics. J. Mol. Biol. 353, 232–241 (2005).

    Article  CAS  Google Scholar 

  39. Sun, Y. et al. Myosin VI walks “wiggly” on actin with large and variable tilting. Mol. Cell 28, 954–964 (2007).

    Article  CAS  Google Scholar 

  40. De La Cruz, E.M., Ostap, E.M. & Sweeney, H.L. Kinetic mechanism and regulation of myosin VI. J. Biol. Chem. 276, 32373–32381 (2001).

    Article  CAS  Google Scholar 

  41. Chen, Y.H., Yang, J.T. & Chau, K.H. Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry 13, 3350–3359 (1974).

    Article  CAS  Google Scholar 

  42. Lipfert, J., Millett, I.S., Seifert, S. & Doniach, S. Sample holder for small-angle X-ray scattering static and flow cell measurements. Rev. Sci. Instrum. 77, 046108 (2006).

    Article  Google Scholar 

  43. Beno, M. et al. Basic energy sciences synchrotron radiation center undulator sector at the advanced photon source. Nucl. Instrum. Methods Phys. Res. A 467–468, 690–693 (2001).

    Article  Google Scholar 

  44. Seifert, S., Winans, R.E., Tiede, D.M. & Thiyagarajan, P. Design and performance of a ASAXS instrument at the Advanced Photon Source. J. Appl. Cryst. 33, 782–784 (2000).

    Article  CAS  Google Scholar 

  45. Guinier, A. La diffraction des rayons X aux tres petits angles: Application á l'etude de phenomenes ultramicroscopiques. Ann. Phys. (Paris) 12, 161–237 (1939).

    CAS  Google Scholar 

  46. Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495–503 (1992).

    Article  CAS  Google Scholar 

  47. Svergun, D.I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).

    Article  CAS  Google Scholar 

  48. Svergun, D.I., Petoukhov, M.V. & Koch, M.H. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  Google Scholar 

  49. Kozin, M.B. & Svergun, D.I. Automated matching of high- and low-resolution structural models. J. Appl. Crystallogr. 34, 33–41 (2001).

    Article  CAS  Google Scholar 

  50. Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  51. Wriggers, W. & Chacon, P. Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. J. Appl. Crystallogr. 34, 773–776 (2001).

    Article  CAS  Google Scholar 

  52. Churchman, L.S., Okten, Z., Rock, R.S., Dawson, J.F. & Spudich, J.A. Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc. Natl. Acad. Sci. USA 102, 1419–1423 (2005).

    Article  CAS  Google Scholar 

  53. Rice, S.E., Purcell, T.J. & Spudich, J.A. Building and using optical traps to study properties of molecular motors. Methods Enzymol. 361, 112–133 (2003).

    Article  CAS  Google Scholar 

  54. Holmes, K.C., Angert, I., Kull, F.J., Jahn, W. & Schroder, R.R. Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425, 423–427 (2003).

    Article  CAS  Google Scholar 

  55. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Dunn, Z. Bryant and N. Geething of Stanford University for technical help with protein purification and motility assays, critical discussions and manuscript review; H.L. Sweeney of the University of Pennsylvania for plasmids; K. Holmes of the Max Planck Institute for Medical Research, Heidelberg, for the acto-myosin PDB model; T. Fenn of Stanford University for technical help with MALS analysis and graphical presentation; T. Purcell of the University of California, San Fransisco, for help with model building; S. Seifert of the Advanced Photon Source; R. Fenn of Stanford University for help with SAXS data collection; and S. Patel of Stanford University for MALDI analysis. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. B.J.S. is partially supported by grant T32 GM008294; S.D. is supported by grant PO1 GM066275; and J.A.S. is supported by grant GM33289, all from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.J.S. designed constructs, purified proteins, collected CD, MALS, DLS, gel filtration, motility and trap data, and built models; S.S. purified proteins, collected motility and trap data, and built models; J.L. collected and analyzed SAXS data; S.D. and J.A.S. helped in study design and data interpretation; all authors discussed the results and offered revisions on the manuscript.

Corresponding author

Correspondence to James A Spudich.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Methods (PDF 604 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spink, B., Sivaramakrishnan, S., Lipfert, J. et al. Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nat Struct Mol Biol 15, 591–597 (2008). https://doi.org/10.1038/nsmb.1429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1429

  • Springer Nature America, Inc.

This article is cited by

Navigation