Skip to main content
Log in

Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXF1

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

The vertebrate Tap protein is a member of the NXF family of shuttling transport receptors for nuclear export of mRNA. Tap has a modular structure, and its most C-terminal domain is important for binding to FG repeat-containing nuclear pore proteins (FG-nucleoporins) and is sufficient to mediate nuclear shuttling. We report the solution structure of this C-terminal domain, which is based on a distinctive arrangement of four α-helices and is joined to the next module by a flexible 12-residue Pro-rich linker. F617A Tap suppresses FG-nucleoporin binding by the most C-terminal domain that, together with the structure of the other modules from which Tap is constructed, provides a structural context for its nuclear shuttling function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Characterization of TapC and point mutants.
Figure 2: Solution structure of the Tap C-terminal domain.
Figure 3: Features of the Tap C-terminal domain.
Figure 4: Interaction between TapC and FG-nucleoporins.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Cullen, B.R. Mol. Cell. Biol. 20, 4181–4187 (2000).

    Article  CAS  Google Scholar 

  2. Ryan, K.J. & Wente, S. Curr. Opin. Cell Biol. 12, 361–371 (2001).

    Article  Google Scholar 

  3. Stewart, M. et al. FEBS Lett. 498, 145–149 (2001).

    Article  CAS  Google Scholar 

  4. Damelin, M. & Silver, P.A. Mol. Cell 5, 133–140 (2000).

    Article  CAS  Google Scholar 

  5. Rout, M.P. et al. J. Cell Biol. 148, 635–652 (2000).

    Article  CAS  Google Scholar 

  6. Ribbeck, K. & Görlich, D. EMBO J. 20, 1320–1330 (2001).

    Article  CAS  Google Scholar 

  7. Segref, A. et al. EMBO J. 16, 3256–3271 (1997).

    Article  CAS  Google Scholar 

  8. Herold, A. et al. Mol. Cell. Biol. 20, 8996–9008 (2000).

    Article  CAS  Google Scholar 

  9. Tan, W., Zolotukhin, A.S., Bear, J., Patenaude, D.J. & Feldber, B.K. RNA 6, 1762–1772 (2000).

    Article  CAS  Google Scholar 

  10. Braun, I.C., Herold, A., Rode, M., Conti, E. & Izaurralde, E. J. Biol. Chem. 276, 20536–20543 (2001).

    Article  CAS  Google Scholar 

  11. Strässer, K., Bassler, J. & Hurt, E. J. Cell Biol. 150, 695–706 (2000).

    Article  Google Scholar 

  12. Weingand, H.L. et al. Mol. Cell. Biol. 22, 245–256 (2002).

    Article  Google Scholar 

  13. Levesque, L. et al. J. Biol. Chem. 276, 44953–44962 (2001).

    Article  CAS  Google Scholar 

  14. Katahira, J. et al. EMBO J. 18, 2593–2609 (1999).

    Article  CAS  Google Scholar 

  15. Kang, Y. & Cullen, B.R. Genes Dev. 13, 1126–1139 (1999).

    Article  CAS  Google Scholar 

  16. Liker, E., Fernandez, E., Izaurralde, E. & Conti, E. EMBO J. 19, 5587–5598 (2000).

    Article  CAS  Google Scholar 

  17. Fribourg, S., Braun, I.C., Izaurralde, E. & Conti, E. Mol. Cell 8, 645–656 (2001).

    Article  CAS  Google Scholar 

  18. Schmitt, I. & Gerace, L. J. Biol. Chem. 276, 42355–42363 (2001).

    Article  CAS  Google Scholar 

  19. Bachi, A. et al. RNA 6, 136–158 (2000).

    Article  CAS  Google Scholar 

  20. Kang, Y., Bogerd, H.P. & Cullen, B.R. J. Virol. 74, 5863–5871 (2000).

    Article  CAS  Google Scholar 

  21. Suyama, M. et al. EMBO Rep. 1, 53–58 (2000).

    Article  CAS  Google Scholar 

  22. Clarkson, W.D., Kent, H.M. & Stewart, M. J. Mol. Biol. 263, 517–524 (1996).

    Article  CAS  Google Scholar 

  23. Withers-Ward, E.S. et al. Biochemistry 39, 14103–14112 (2000).

    Article  CAS  Google Scholar 

  24. Bayliss, R. et al. J. Mol. Biol. 293, 579–593 (1999).

    Article  CAS  Google Scholar 

  25. Bayliss, R., Littlewood, T.D. & Stewart, M. Cell 102, 99–108 (2000).

    Article  CAS  Google Scholar 

  26. Wüthrich, K. NMR of proteins and nucleic acids (John Wiley, New York; 1986).

    Book  Google Scholar 

  27. Hommel, U., Harvey, T.S., Driscoll, P.C. & Campbell, I.D. J. Mol. Biol. 227, 271–282 (1992).

    Article  CAS  Google Scholar 

  28. Nilges, M. J. Mol. Biol. 245, 645–660 (1995).

    Article  CAS  Google Scholar 

  29. Nilges, M., Gronenborn, A.M., Brünger, A.T. & Clore, G.M. Protein Eng. 2, 27–38 (1988).

    Article  CAS  Google Scholar 

  30. Brünger, A.T. X-PLOR Version 3.1(Yale University, New Haven; 1992).

    Google Scholar 

  31. Diamond, R. Acta Crystallogr. D 51, 127–135 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to our colleagues in Cambridge and Heidelberg, especially R. Bayliss, T. Littlewood, K. Strässer and A. Weeds for their helpful comments and criticisms. We thank J.C. Yang for help in recording NMR spectra, S. Peak-Chew for N-terminal sequencing and mass spectroscopy, and G. Wong for preparing proteins. Supported in part by the Human Frontiers Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murray Stewart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grant, R., Hurt, E., Neuhaus, D. et al. Structure of the C-terminal FG-nucleoporin binding domain of Tap/NXF1. Nat Struct Mol Biol 9, 247–251 (2002). https://doi.org/10.1038/nsb773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb773

  • Springer Nature America, Inc.

This article is cited by

Navigation