Skip to main content
Log in

Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222

  • Letter
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

Abstract

Wild type green fluorescent protein (GFP) from Aequorea victoria absorbs predominantly at 398 nm. Illumination with UV (254 nm) or visible (390 nm) light transforms this state (GFP398) into one absorbing at 483 nm (GFP483). Here we show that this photoconversion of GFP is a one-photon process that is paralleled by decarboxylation of Glu 222. We propose a mechanism in which decarboxylation is due to electron transfer between the γ-carboxylate of Glu 222 and the p-hydroxybenzylidene-imidazolidinone chromophore of GFP, followed by reverse transfer of an electron and a proton to the remaining carbon side chain atom of Glu 222. Oxidative decarboxylation of a γ-carboxylate represents a new type of posttranslational modification that may also occur in enzymes with high-potential reaction intermediates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Spectroscopic properties of GFP phototransformation.
Figure 2: Phototransformation results in a mass reduction of 44 Da.
Figure 3: Photo-induced conformational changes in the chromophore vicinity.
Figure 4: Proposed mechanism for light-induced decarboxylation of Glu 222.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Shimomura, O. FEBS Lett. 104, 220–222 (1979).

    Article  CAS  Google Scholar 

  2. Yang, F., Moss, L.G. & Phillips, G.N. Jr. Nature Biotech. 14, 1246–1251 (1996).

    Article  CAS  Google Scholar 

  3. Ormö, M. et al. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  4. Tsien, R.Y. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  5. Heim, R., Prasher, D.C. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

    Article  CAS  Google Scholar 

  6. Brejc, K. et al. Proc. Natl. Acad. Sci. USA 94, 2306–2311 (1997).

    Article  CAS  Google Scholar 

  7. Palm, G.J. et al. Nature Struct. Biol. 4, 361–365 (1997).

    Article  CAS  Google Scholar 

  8. Heim, R., Cubitt, A.B. & Tsien, R.Y. Nature 373, 663–664 (1995).

    Article  CAS  Google Scholar 

  9. Chattoraj, M., King, B.A., Bublitz, G.U. & Boxer, S.G. Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).

    Article  CAS  Google Scholar 

  10. Bubliz, G., King, B.A. & Boxer, S.G. J. Am. Chem. Soc. 120, 9370–9371 (1998).

    Article  Google Scholar 

  11. Youvan, D.C. & Michel-Beyerle, M.E. Nature Biotech. 14, 1219–1220 (1996).

    Article  CAS  Google Scholar 

  12. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Science 263, 802–805 (1994).

    Article  CAS  Google Scholar 

  13. Cubitt, A.B., et al. Trends. Biochem. Sci. 20, 448–455 (1995).

    Article  CAS  Google Scholar 

  14. van Thor, J.J., Pierik, A.J., Nugteren-Roodzant, I., Xie, A. & Hellingwerf, K.J. Biochemistry 37, 16915–16921 (1998).

    Article  CAS  Google Scholar 

  15. Ehrig, T., O'Kane, D.J. & Prendergast, F.G. FEBS Lett. 367, 163–166 (1995).

    Article  CAS  Google Scholar 

  16. Striker, G., Subramaniam, V., Seidel, C.A.M. & Volkmer, A. J. Phys. Chem. B. 103, 8612–8617 (1999).

    Article  CAS  Google Scholar 

  17. Seebacher, C., Deeg, F.W. & Brauchle, C. J. Phys. Chem. B. 103, 7728–7732 (1999).

    Article  CAS  Google Scholar 

  18. Creemers, T.M., Lock, A.J., Subramaniam, V., Jovin, T.M. & Volker, S. Nature Struct. Biol. 6, 557–560 (1999).

    Article  CAS  Google Scholar 

  19. Elsliger, M.A., Wachter, R.M., Hanson, G.T., Kallio, K. & Remington, S.J. Biochemistry 38, 5296–5301 (1999).

    Article  CAS  Google Scholar 

  20. Burmeister, W.P. Acta Crystallogr. D. 56, 328–341 (2000).

    Article  CAS  Google Scholar 

  21. Ward, W.W., Prentice, H.J., Roth, A.F., Cody, C.W. & Reeves, S.C. Photochem. Photobiol. 35, 803–808 (1982).

    Article  CAS  Google Scholar 

  22. Kolbe, H. Ann. Chem. Pharm. 69, 257–294 (1849).

    Article  Google Scholar 

  23. Anderson, J.M. & Kochi, J.K. J. Am. Chem. Soc. 92, 2450–2460 (1970).

    Article  CAS  Google Scholar 

  24. Crameri, A., Whitehorn, E.A., Tate, E. & Stemmer, W.P. Nature Biotech. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  25. Leslie, A.G.W. In Crystallographic computing (eds Moras, D., Podjarni, A.D. & Thierry, J.C.) 50–61 (Oxford University Press, Oxford; 1991).

    Google Scholar 

  26. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

Download references

Acknowledgements

We acknowledge E. Garman for helping establish the extent of X-ray induced structural damage and T. Davies for help with crystallographic computing. We thank A. Watts for help with ESR measurements, and C. Valance, R. Wilmouth and R. Aplin for access to their facilities. J.J.v.T. acknowledges financial support from the European Molecular Biology Organization and the Human Frontier Science Program Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasper J. van Thor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Thor, J., Gensch, T., Hellingwerf, K. et al. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Mol Biol 9, 37–41 (2002). https://doi.org/10.1038/nsb739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb739

  • Springer Nature America, Inc.

This article is cited by

Navigation