Skip to main content
Log in

The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues

  • Article
  • Published:

From Nature Structural Biology

View current issue Submit your manuscript

An Erratum to this article was published on 01 August 1994

Abstract

Adjacent cysteine residues can only form disulphide bridges in a distorted structure containing a cis–peptide link. Such bridges are extremely uncommon, identified so far in the acetyl choline receptor alone where the structure of the bridge is undetermined. Here we present the first molecular description of a disulphide bridge of this type in the quinoprotein methanol dehydrogenase from Methylobacterium extorquens. We show that this structure occurs in close proximity to the pyrrolo–quinoline quinone prosthetic group and a calcium ion in the active site of the enzyme. This unusual disulphide bridge appears to play a role in the electron transfer reaction mediated by methanol dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anthony, C. The bacterial oxidation of methane and methanol. Adv. microb. Physiol. 27, 113–210 (1986).

    Article  CAS  Google Scholar 

  2. Anthony, C. Methanol dehydrogenase in gram-negative bacteria. in Principles and applications of quinoproteins (ed. Davidson, V.L.) 17–45 (Marcel Dekker, New York, 1993).

    Google Scholar 

  3. Anthony, C. The c-type cytochromes of methylotrophic bacteria. Biochim. biophys. Acta 1099, 1–15 (1992).

    Article  CAS  Google Scholar 

  4. Anthony, C. & Zatman, L.J. The microbial oxidation of methanol: The prosthetic group of alcohol dehydrogenase of Pseudomonas sp.M27: A newoxidoreductase prosthetic group. Biochem. J. 104, 960–969 (1967).

    Article  CAS  Google Scholar 

  5. Salisbury, S.A., Forrest, H.S., Cruse, W.B.T. & Kennard, O. A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 280, 843–844 (1979).

    Article  CAS  Google Scholar 

  6. Duine, J.A., Frank, J. & Verwiel, P.E.J. Structure and activity of the prosthetic group of methanol dehydrogenase. Eur. J. Biochem. 108, 187–192 (1980).

    Article  CAS  Google Scholar 

  7. Nunn, D.N., Day, D.J. & Anthony, C. The second subunit of methanol dehydrogenase of Methylobacterium extorquens AM1. Biochem. J. 260, 857–862 (1989).

    Article  CAS  Google Scholar 

  8. Richardson, I.W. & Anthony, C. Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion. Biochem. J. 287, 709–715 (1992).

    Article  CAS  Google Scholar 

  9. Anderson, D.J., Morris, C.J., Nunn, D.N., Anthony, C. & Lidstrom, M.E. Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and moxJ genes involved in methanol oxidation. Gene. 90, 173–176 (1990).

    Article  CAS  Google Scholar 

  10. Ramachandran, G.N. & Sasisekharan, V. Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283–437 (1968).

    Article  CAS  Google Scholar 

  11. Chandrasekaran, R. & Balasubramanian, R. Stereochemical studies of cyclic peptides. VI. Energy calculations of the cyclic dipeptide cysteinyl-cysteine. Biochim. biophys. Acta 188, 1–9 (1969).

    Article  CAS  Google Scholar 

  12. Capasso, S., Mattia, C. & Mazzarella, L. Structure of a cis-peptide unit: molecular conformation of the cyclic disulphide L-cysteinyl-L-cysteine. Acta Crystallog. B33, 2080–2083 (1977).

    Article  CAS  Google Scholar 

  13. Mez, H.-C. Cyclo-L-cystine acetic acid. Cryst. Struct. Comm. 3, 657–660 (1993).

    Google Scholar 

  14. Mosckovitz, R. & Gershoni, J.M. Three possible disulphides in the acetylcholine receptor α-subunit. J. biol. Chem. 263, 1017–1022 (1988).

    CAS  PubMed  Google Scholar 

  15. Ghosh, M., Harlos, K., Blake, C.C.F., Richardson, I. & Anthony, C. Crystallisation and preliminary crystallographic investigation of methanol dehydrogenase from Methylobacterium extorquens AM1. J. molec. Biol. 228, 302–305 (1992).

    Article  CAS  Google Scholar 

  16. Adachi, O., Matsushita, K., Shinagawa, E. & Ameyama, M. Calcium in quinoprotein methanol dehydrogenase can be replaced by strontium. Agric. Biol. Chem. 54, 2833–2837 (1990).

    CAS  Google Scholar 

  17. Duine, J.A., Frank, J. & Jongejaw, J.A. Enzymology of quinoproteins. Adv. Enzym. 59, 169–212 (1987).

    CAS  Google Scholar 

  18. Frank, J. et al. On the mechanism of inhibition of methanol dehyrogenase by cyclopropane-derived inhibitors. Eur. J. Biochem. 184, 187–195 (1989).

    Article  CAS  Google Scholar 

  19. Frank, J., Dijkstra, M., Balny, C., Verwiel, P.E.J. and Duine, J.A. Methanol dehydrogenase: mechanism of action. In PQQ and Quinoproteins (eds Jongejan, J.A. & Duine, J.A.) 13–22 (Kluwer Academic Publishers, Dordrecht, 1989).

    Chapter  Google Scholar 

  20. Xia, X.A. et al. The 3-dimensional structures of methanol dehydrogenase from 2 methylotrophic bacteria at 2.6 Ångstrom resolution. J. biol. Chem. 267, 22289–22297 (1992).

    CAS  PubMed  Google Scholar 

  21. Torchinsky, Y.M., Wittenberg, W. and Metzler, D. Methods for the quantitative determination of SH and S-S groups in proteins. In: Sulphur in Proteins, 113–132 (Pergamon, Oxford, 1981).

    Google Scholar 

  22. Day, D.J. & Anthony, C. Methanol dehydrogenase from Methylobacterium exorquens AM1. Meth. Enzym., 188, 210–216 (1990).

    Article  CAS  Google Scholar 

  23. Jones, T.A. Interactive computer graphics: FRODO. Meth. Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  24. Jones, T.A., Zuo, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building models in electron density maps and the location of errors in these models. Acta Crystallog. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blake, C., Ghosh, M., Harlos, K. et al. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat Struct Mol Biol 1, 102–105 (1994). https://doi.org/10.1038/nsb0294-102

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0294-102

  • Springer Nature America, Inc.

This article is cited by

Navigation