Skip to main content

Advertisement

Log in

Bacterial cytotoxins: targeting eukaryotic switches

  • Review Article
  • Published:

From Nature Reviews Microbiology

View current issue Sign up to alerts

Key Points

  • The Rho GTPases are frequently targeted by many different bacterial cytotoxins. Although it might seem surprising that a divergent array of toxins that have different modes of action and come from a range of bacterial species target the same effector, the Rho GTPases have been identified as eukaryotic master 'molecular switches' in many signal transduction pathways and, crucially, in regulation of the actin cytoskeleton.

  • Rho GTPases have many regulatory roles in host–pathogen interactions and host defence, including maintaining epithelial barriers, leukocyte migration, phagocytosis, T cell–APC (antigen presenting cell) interaction, and nuclear factor κB (NF-κB) regulation.

  • The GTPase cycle is the key to regulating the activity of the Rho GTPases. Bacterial cytotoxins can affect all the phases of the GTPase cycle.

  • The irreversible inhibition of Rho GTPases by cytotoxins is achieved through covalent modification by glucosylation (for example, by the clostridial glucosylating cytotoxins), ADP-ribosylation (the C3-like exoenzymes) or proteolytic cleavage (Yersinia enterocolitica YopT).

  • Reversible inhibition is achieved by bacterial effectors with a GTPase-activating protein-like activity (for example Yersinia spp. YopE, Salmonella SptP and Pseudomonas aeruginosa ExoS and ExoT).

  • GTPases can also be activated by deamidation and transglutamination by Escherichia coli and Yersinia pseudotuberculosis cytotoxic necrotizing factors and Bordetella spp. dermotoxic necrotizing toxin, respectively.

  • Additionally, some toxins are able to modify actin directly, including the family of binary actin-ADP-ribosylating toxins, the actin ADP-ribosyltransferase SpvB from Salmonella, and the actin crosslinking repeats-in-toxin cytotoxin from Vibrio cholerae.

Abstract

Many bacterial cytotoxins act on eukaryotic cells by targeting the regulators that are involved in controlling the cytoskeleton or by directly modifying actin, with members of the Rho GTPase family being particularly important targets. The actin cytoskeleton, and especially the GTPase 'molecular switches' that are involved in its control, have crucial functions in innate and adaptive immunity, and have pivotal roles in the biology of infection. In this review, we briefly discuss the role of the actin cytoskeleton and the Rho GTPases in host–pathogen interactions, and review the mode of actions of bacterial protein toxins that target these components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: The GTPase cycle and the regulation of Rho proteins by GEFs, GAPs and GDI.
Figure 2: A simplified model of the tight junctions found in the epithelial barrier.
Figure 3: Schematic structures of Rho-inactivating toxins and Rho-activating toxins.
Figure 4: Consequences of the actions of bacterial cytotoxins on Rho GTPases.
Figure 5: The effects of Clostridium difficile toxins A and B on the intestine.

Similar content being viewed by others

References

  1. Wennerberg, K. & Der, C. J. Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Ridley, A. J. & Hall, A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70, 389–399 (1992). An early indication that Rho regulates the formation of stress fibres, whereas Cdc42 and Rac regulate the formation of filopodia and lamellipodia, respectively.

    Article  CAS  PubMed  Google Scholar 

  3. Ridley, A. J., Paterson, H. F., Johnston, C. L., Diekmann, D. & Hall, A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70, 401–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Burridge, K. & Wennerberg, K. Rho and Rac take center stage. Cell 116, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295–2322 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Millard, T. H., Sharp, S. J. & Machesky, L. M. Signalling to actin assembly via the WASP (Wiskott–Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem. J. 380, 1–17 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Welch, M. D. & Mullins, R. D. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18, 247–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231 (1999). Provided an early indication that WASP is the protein that links cell signalling to actin polymerization.

    Article  CAS  PubMed  Google Scholar 

  12. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Stradal, T. E. et al. Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol. 14, 303–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Braga, V. M., Machesky, L. M., Hall, A. & Hotchin, N. A. The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J. Cell Biol. 137, 1421–1431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nusrat, A. et al. Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc. Natl Acad. Sci. USA 92, 10629–10633 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bruewer, M., Hopkins, A. M., Hobert, M. E., Nusrat, A. & Madara, J. L. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am. J. Physiol. Cell Physiol. 287, C327–C335 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Vaezi, A., Bauer, C., Vasioukhin, V. & Fuchs, E. Actin cable dynamics and Rho/Rock orchestrate a polarized cytoskeletal architecture in the early steps of assembling a stratified epithelium. Dev. Cell 3, 367–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Fenteany, G., Janmey, P. A. & Stossel, T. P. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr. Biol. 10, 831–838 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Nobes, C. D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Snapp, K. R., Heitzig, C. E. & Kansas, G. S. Attachment of the PSGL-1 cytoplasmic domain to the actin cytoskeleton is essential for leukocyte rolling on P-selectin. Blood 99, 4494–4502 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ivetic, A. & Ridley, A. J. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology 112, 165–176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Setiadi, H. & McEver, R. P. Signal-dependent distribution of cell surface P-selectin in clathrin-coated pits affects leukocyte rolling under flow. J. Cell Biol. 163, 1385–1395 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brakebusch, C. & Fassler, R. The integrin–actin connection, an eternal love affair. EMBO J. 22, 2324–2333 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Worthylake, R. A. & Burridge, K. RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278, 13578–13584 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Smith, A., Bracke, M., Leitinger, B., Porter, J. C. & Hogg, N. LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J. Cell Sci. 116, 3123–3133 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Worthylake, R. A., Lemoine, S., Watson, J. M. & Burridge, K. RhoA is required for monocyte tail retraction during transendothelial migration. J. Cell Biol. 154, 147–160 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. van Wetering, W. S. et al. VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration. Am. J. Physiol. Cell Physiol. 285, C343–C352 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Caron, E. & Hall, A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721 (1998). Showed the role of Rho GTPases in two independent phagocytic mechanisms.

    Article  CAS  PubMed  Google Scholar 

  30. Vicente-Manzanares, M. & Sanchez-Madrid, F. Role of the cytoskeleton during leukocyte responses. Nature Rev. Immunol. 4, 110–122 (2004).

    Article  CAS  Google Scholar 

  31. May, R. C., Caron, E., Hall, A. & Machesky, L. M. Involvement of the Arp2/3 complex in phagocytosis mediated by FcγR or CR3. Nature Cell Biol. 2, 246–248 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Olazabal, I. M. et al. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr. Biol. 12, 1413–1418 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Bokoch, G. M. & Diebold, B. A. Current molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100, 2692–2696 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Roberts, A. W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Dreikhausen, U. et al. Regulation by rho family GTPases of IL-1 receptor induced signaling: C3-like chimeric toxin and Clostridium difficile toxin B inhibit signaling pathways involved in IL-2 gene expression. Eur. J. Immmunol. 31, 1610–1619 (2001).

    Article  CAS  Google Scholar 

  36. Hao, S., Kurosaki, T. & August, A. Differential regulation of NFAT and SRF by the B cell receptor via a PLCγCa(2+)-dependent pathway. EMBO J. 22, 4166–4177 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Croker, B. A. et al. The Rac2 guanosine triphosphatase regulates B lymphocyte antigen receptor responses and chemotaxis and is required for establishment of B-1a and marginal zone B lymphocytes. J. Immunol. 168, 3376–3386 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Miletic, A. V., Swat, M., Fujikawa, K. & Swat, W. Cytoskeletal remodeling in lymphocyte activation. Curr. Opin. Immunol. 15, 261–268 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Acuto, O. & Cantrell, D. T cell activation and the cytoskeleton. Annu. Rev. Immunol. 18, 165–184 (2000). A review that describes the relationships between the actin cytoskeleton and host cell immunology.

    Article  CAS  PubMed  Google Scholar 

  40. Stowers, L., Yelon, D., Berg, L. J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl Acad. Sci. USA 92, 5027–5031 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Costello, P. S. et al. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-κB pathways. Proc. Natl Acad. Sci. USA 96, 3035–3040 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Benvenuti, F. et al. Requirement of Rac1 and Rac2 expression by mature dendritic cells for T cell priming. Science 305, 1150–1153 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Barois, N., Forquet, F. & Davoust, J. Actin microfilaments control the MHC class II antigen presentation pathway in B cells. J. Cell Sci. 111, 1791–1800 (1998).

    CAS  PubMed  Google Scholar 

  44. Schraufstatter, I. U., Trieu, K., Sikora, L., Sriramarao, P. & DiScipio, R. Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J. Immunol. 169, 2102–2110 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Fiorentini, C., Falzano, L., Travaglione, S. & Fabbri, A. Hijacking Rho GTPases by protein toxins and apoptosis: molecular strategies of pathogenic bacteria. Cell Death Differ. 10, 147–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Perona, R. et al. Activation of the nuclear factor-κB by Rho, Cdc42, and Rac-1 proteins. Genes Dev. 11, 463–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Fritz, G. & Kaina, B. Ras-related GTPase Rhob represses NF-κB signaling. J. Biol. Chem. 276, 3115–3122 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Arbibe, L. et al. Toll-like receptor 2-mediated NF-κB activation requires a Rac1-dependent pathway. Nature Immunol. 1, 533–540 (2000).

    Article  CAS  Google Scholar 

  51. Teusch, N., Lombardo, E., Eddleston, J. & Knaus, U. G. The low molecular weight GTPase RhoA and atypical protein kinase ζ are required for TLR2-mediated gene transcription. J. Immunol. 173, 507–514 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bartlett, J. G., Moon, N., Chang, T. W., Taylor, N. & Onderdonk, A. B. Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75, 778–782 (1978).

    CAS  PubMed  Google Scholar 

  53. Kelly, C. P., Pothoulakis, C. & LaMont, J. T. Clostridium difficile colitis. N. Engl. J. Med. 330, 257–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Busch, C. & Aktories, K. Microbial toxins and the glucosylation of Rho family GTPases. Curr. Opin. Struct. Biol. 10, 528–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Von Eichel-Streiber, C., Boquet, P., Sauerborn, M. & Thelestam, M. Large clostridial cytotoxins — a family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol. 4, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Hofmann, F., Busch, C., Prepens, U., Just, I. & Aktories, K. Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J. Biol. Chem. 272, 11074–11078 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Just, I. et al. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J. Biol. Chem. 270, 13932–13936 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Just, I. et al. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375, 500–503 (1995). Describes the mode of action of C. difficile toxin B in glucosylating Rho.

    Article  CAS  PubMed  Google Scholar 

  59. Herrmann, C., Ahmadian, M. R., Hofmann, F. & Just, I. Functional consequences of monoglucosylation of H-Ras at effector domain amino acid threonine-35. J. Biol. Chem. 273, 16134–16139 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Sehr, P. et al. Glucosylation and ADP-ribosylation of Rho proteins — Effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37, 5296–5304 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Genth, H., Aktories, K. & Just, I. Monoglucosylation of RhoA at Threonine-37 blocks cytosol–membrane cycling. J. Biol. Chem. 274, 29050–29056 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Ottlinger, M. E. & Lin, S. Clostridium difficile toxin B induces reorganization of actin, vinculin, and talin in cultures cells. Exp. Cell Res. 174, 215–229 (1988).

    Article  CAS  PubMed  Google Scholar 

  63. Fiorentini, C. & Thelestam, M. Clostridium difficile toxin A and its effects on cells. Toxicon. 29, 543–567 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Prepens, U., Just, I., Von Eichel-Streiber, C. & Aktories, K. Inhibition of FcεRI-mediated activation of rat basophilic leukemia cells by Clostridium difficile toxin B (monoglucosyltransferase). J. Biol. Chem. 271, 7324–7329 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Schmidt, M. et al. Inhibition of receptor signaling to phospholipase D by Clostridium difficile toxin B — role of Rho proteins. J. Biol. Chem. 271, 2422–2426 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Brito, G. A. C. et al. Mechanism of Clostridium difficile toxin A-induced apoptosis in T84 cells. J. Infect. Dis. 186, 1438–1447 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Hippenstiel, S. et al. Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L830–838 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hippenstiel, S. et al. Glucosylation of small GTP-binding Rho proteins disrupts endothelial barrier function. Am. J. Physiol. 272, L38–L43 (1997).

    CAS  PubMed  Google Scholar 

  70. Nusrat, A. et al. Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect. Immun. 69, 1329–1336 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riegler, M. et al. Clostridium difficile toxin B is more potent than toxin A in damaging human colonic epithelium in vitro. J. Clin. Invest. 95, 2004–2011 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gerhard, R., Schmidt, G., Hofmann, F. & Aktories, K. Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco-2 cells. Infect. Immun. 66, 5125–5131 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Hecht, G., Pothoulakis, C., LaMont, J. T. & Madara, J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J. Clin. Invest. 82, 1516–1524 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jou, T. -S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pothoulakis, C. et al. Clostridium difficile toxin A stimulates intracellular calcium release and chemotactic response in human granulocytes. J. Clin. Invest. 81, 1741–1745 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Warny, M. et al. p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J. Clin. Invest. 105, 1147–1156 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Savidge, T. C. et al. Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. Gastroenterology 125, 413–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Jefferson, K. K., Smith, M. F. Jr & Bobak, D. A. Roles of intracellular calcium and NF-κB in the Clostridium difficile toxin A-induced up-regulation and secretion of IL-8 from human monocytes. J. Immunol. 163, 5183–5191 (1999).

    CAS  PubMed  Google Scholar 

  79. Ishida, Y. et al. Essential involvement of IFN-γ in Clostridium difficile toxin A-induced enteritis. J. Immunol. 172, 3018–3025 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Pothoulakis, C. & LaMont, J. T. Microbes and microbial toxins: paradigms for microbial–mucosal interactions. II. The integrated response of the intestine to Clostridium difficile toxins. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G178–G183 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Pothoulakis, C. et al. CP-96,345, a substance P antagonist, inhibits rat intestinal responses to Clostridium difficile toxin A but not cholera toxin. Proc. Natl Acad. Sci. USA 91, 947–951 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Anton, P. M. et al. Corticotropin-releasing hormone (CRH) requirement in Clostridium difficile toxin A-mediated intestinal inflammation. Proc. Natl Acad. Sci. USA 101, 8503–8508 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wershil, B. K., Castagliuolo, I. & Pothoulakis, C. Direct evidence of mast cell involvement in Clostridium difficile toxin A-induced enteritis in mice. Gastroenterology 114, 956–964 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Huang, S., Chen, L. Y., Zuraw, B. L., Ye, R. D. & Pan, Z. K. Chemoattractant-stimulated NF-κB activation is dependent on the low molecular weight GTPase RhoA. J. Biol. Chem. 276, 40977–40981 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Chen, M. L., Pothoulakis, C. & LaMont, J. T. Protein kinase C signaling regulates ZO-1 translocation and increased paracellular flux of T84 colonocytes exposed to Clostridium difficile toxin A. J. Biol. Chem. 277, 4247–4254 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. He, D. et al. Clostridium difficile toxin A causes early damage to mitochondria in cultured cells. Gastroenterology 119, 139–150 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Hippenstiel, S. et al. Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 95, 3044–3051 (2000).

    CAS  PubMed  Google Scholar 

  88. Gerhard, R. et al. Clostridium difficile toxin A induces expression of the stress-induced early gene product RhoB. J. Biol. Chem. 280, 1499–1505 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Aktories, K., Braun, U., Rösener, S., Just, I. & Hall, A. The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem. Biophys. Res. Commun. 158, 209–213 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Chardin, P. et al. The mammalian G protein rho C is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilament in Vero cells. EMBO J. 8, 1087–1092 (1989). Shows that Rho is the target of ADP-ribosylation by C. botulinum exoenzyme C3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Just, I. et al. Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J. Biol. Chem. 267, 10274–10280 (1992).

    CAS  PubMed  Google Scholar 

  92. Wilde, C., Vogelsgesang, M. & Aktories, K. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization. Biochemistry 42, 9694–9702 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Wilde, C., Chhatwal, G. S., Schmalzing, G., Aktories, K. & Just, I. A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J. Biol. Chem. 276, 9537–9542 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Sekine, A., Fujiwara, M. & Narumiya, S. Asparagine residue in the rho gene product is the modification site for botulinum ADP-ribosyltransferase. J. Biol. Chem. 264, 8602–8605 (1989).

    CAS  PubMed  Google Scholar 

  95. Genth, H., Schmidt, M., Gerhard, R., Aktories, K. & Just, I. Activation of phospholipase D1 by ADP-ribosylated RhoA. Biochem. Biophys. Res. Commun. 302, 127–132 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Genth, H. et al. Entrapment of Rho ADP-ribosylated by Clostridium botulinum C3 exoenzyme in the Rho–guanine nucleotide dissociation inhibitor-1 complex. J. Biol. Chem. 278, 28523–28527 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Paterson, H. F. et al. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J. Cell Biol. 111, 1001–1007 (1990). Gives the functional consequences of ADP-ribosylation of RhoA and demonstrates how to use C3 exoenzyme as a tool.

    Article  CAS  PubMed  Google Scholar 

  98. Madden, J. C., Ruiz, N. & Caparon, M. Cytolysin-mediated translocation (CMT): a functional equivalent type III secretion in Gram-positive bacteria. Cell 104, 143–152 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Bricker, A. L., Cywes, C., Ashbaugh, C. D. & Wessels, M. R. NAD+-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Mol. Microbiol. 44, 257–269 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Haque, A. et al. Production, purification, and characterization of botulinolysin, a thiol-activated hemolysin of Clostridium botulinum. Infect. Immun. 60, 71–78 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Beecher, D. J., Olsen, T. W., Somers, E. B. & Wong, A. C. Evidence for contribution of tripartite hemolysin BL, phosphatidylcholine-preferring phospholipase C, and collagenase to virulence of Bacillus cereus endophthalmitis. Infect. Immun. 68, 5269–5276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wilde, C., Chhatwal, G. S. & Aktories, K. C3stau, a new member of the family of C3-like ADP-ribosyltransferases. Trends Microbiol. 10, 5–7 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Iriarte, M. & Cornelis, G. R. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol. Microbiol. 29, 915–929 (1998).

    Article  CAS  PubMed  Google Scholar 

  104. Shao, F., Merritt, P. M., Bao, Z., Innes, R. W. & Dixon, J. E. A Yersinia effector and a Pseudomonas avirulence protein define a family of cysteine proteases functioning in bacterial pathogenesis. Cell 109, 575–588 (2002). First to show that YopT was a cysteine protease.

    Article  CAS  PubMed  Google Scholar 

  105. Shao, F. et al. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in Rho GTPases. Proc. Natl Acad. Sci. USA 100, 904–909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zumbihl, R. et al. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274, 29289–29293 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Aepfelbacher, M. et al. Characterization of YopT effects on Rho GTPases in Yersinia enterocolitica infected cells. J. Biol. Chem. 278, 33217–33223 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Grosdent, N., Maridonneau-Parini, I., Sory, M. -P. & Cornelis, G. Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagosytosis. Infect. Immun. 70, 4165–4176 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Guan, K. L. & Dixon, J. E. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249, 553–556 (1990). Identified the phosphatase activity of YopH.

    Article  CAS  PubMed  Google Scholar 

  110. Persson, C., Carballeira, N., Wolf-Watz, H. & Fällman, M. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 16, 2307–2318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Black, D. S., Marie-Cardine, A., Schraven, B. & Bliska, J. B. The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell. Microbiol. 2, 401–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Barz, C., Abahji, T. N., Trülzsch, K. & Heesemann, J. The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and Rac-1. FEBS Lett. 482, 139–143 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Goehring, U. -M., Schmidt, G., Pederson, K. J., Aktories, K. & Barbieri, J. T. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274, 36369–36372 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. von Pawel-Rammingen, U. et al. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol. Microbiol. 36, 737–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  115. Fu, Y. & Galan, J. E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401, 293–297 (1999). First to determine that bacterial toxins can be molecular mimics of Rho GAPs.

    Article  CAS  PubMed  Google Scholar 

  116. Kaniga, K., Uralil, J., Bliska, J. B. & Galandrini, R. A secreted protein tyrosine phosphatase with modular effector domains in the bacterial pathogen Salmonella typhimurium. Mol. Microbiol. 21, 633–641 (1996).

    Article  CAS  PubMed  Google Scholar 

  117. Krall, R., Schmidt, G., Aktories, K. & Barbieri, J. T. Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect. Immun. 68, 6066–6068 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Caprioli, A., Falbo, V., Roda, L. G., Ruggeri, F. M. & Zona, C. Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect. Immun. 39, 1300–1306 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Caprioli, A. et al. A cell division-active protein from E. coli. Biochem. Biophys. Res. Commun. 118, 587–593 (1984).

    Article  CAS  PubMed  Google Scholar 

  120. Oswald, E. et al. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc. Natl Acad. Sci. USA 91, 3814–3818 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Falzano, L. et al. Induction of phagocytic behaviour in human epithelial cells by Escherichia coli cytotoxic necrotizing factor type 1. Mol. Microbiol. 9, 1247–1254 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Fiorentini, C. et al. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J. Biol. Chem. 272, 19532–19537 (1997).

    Article  CAS  PubMed  Google Scholar 

  123. Schmidt, G. et al. Gln63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor 1. Nature 387, 725–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Flatau, G. et al. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 387, 729–733 (1997). Identified the CNF toxins as deaminases.

    Article  CAS  PubMed  Google Scholar 

  125. de Rycke, J. et al. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J. Clin. Microbiol. 28, 694–699 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lockman, H. A., Gillespie, R. A., Baker, B. D. & Shakhnovich, E. Yersinia pseudotuberculosis produces a cytotoxic necrotizing factor. Infect. Immun. 70, 2708–2714 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lemichez, E., Flatau, G., Bruzzone, M., Boquet, P. & Gauthier, M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol. Microbiol. 24, 1061–1070 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Buetow, L., Flatau, G., Chiu, K., Boquet, P. & Ghosh, P. Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1. Nature Struct. Biol. 8, 584–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Lerm, M., Schmidt, G., Goehring, U. -M., Schirmer, J. & Aktories, K. Identification of the region of Rho involved in substrate recognition by Escherichia coli cytotoxic necrotizing factor 1 (CNF1). J. Biol. Chem. 274, 28999–29004 (1999).

    Article  CAS  PubMed  Google Scholar 

  130. Hoffmann, C. et al. The Yersinia pseudotuberculosis cytotoxic necrotizing factor (CNFY) selectively activates RhoA. J. Biol. Chem. 279, 16026–16032 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Lerm, M. et al. Deamidation of Cdc42 and Rac by Escherichia coli cytotoxic necrotizing factor 1 (CNF1): activation of c-Jun-N-terminal kinase in HeLa cells. Infect. Immun. 67, 496–503 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lerm, M., Pop, M., Fritz, G., Aktories, K. & Schmidt, G. Proteasomal degradation of cytotoxic necrotizing factor 1-activated Rac. Infect. Immun. 70, 4053–4058 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Doye, A. et al. CNF1 exploits the ubiquitin-proteasome machinery to restrict Rho GTPase activation for bacterial host cell invasion. Cell 111, 553–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Rippere-Lampe, K. E., O'Brien, A. D., Conran, R. & Lockman, H. A. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun. 69, 3954–3964 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rippere-Lampe, K. E. et al. Cytotoxic necrotizing factor type 1-positive Escherichia coli causes increased inflammation and tissue damage to the prostate in a rat prostatitis model. Infect. Immun. 69, 6515–6519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Khan, N. A. et al. Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J. Biol. Chem. 277, 15607–15612 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Hopkins, A. M., Walsh, S. V., Verkade, P., Boquet, P. & Nusrat, A. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J. Cell Sci. 116, 725–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Horiguchi, Y. et al. Bordetella bronchiseptica dermonecrotizing toxin induces reorganization of actin stress fibers through deamidation of Gln-63 of the GTP-binding protein Rho. Proc. Natl Acad. Sci. USA 94, 11623–11626 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Masuda, M. et al. Activation of Rho through a cross-link with polyamines catalyzed by Bordetella dermonecrotizing toxin. EMBO J. 19, 521–530 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Aktories, K. et al. Botulinum C2 toxin ADP-ribosylates actin. Nature 322, 390–392 (1986). First to show that C2 toxin directly ADP-ribosylates actin.

    Article  CAS  PubMed  Google Scholar 

  141. Ohishi, I., Iwasaki, M. & Sakaguchi, G. Purification and characterization of two components of botulinum C2 toxin. Infect. Immun. 30, 668–673 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Vandekerckhove, J., Schering, B., Bärmann, M. & Aktories, K. Botulinum C2 toxin ADP-ribosylates cytoplasmic β/γ-actin in arginine 177. J. Biol. Chem. 263, 696–700 (1988).

    CAS  PubMed  Google Scholar 

  143. Wegner, A. & Aktories, K. ADP-ribosylated actin caps the barbed ends of actin filaments. J. Biol. Chem. 263, 13739–13742 (1988).

    CAS  PubMed  Google Scholar 

  144. Wille, M., Just, I., Wegner, A. & Aktories, K. ADP-ribosylation of the gelsolin–actin complex by clostridial toxins. J. Biol. Chem. 267, 50–55 (1992).

    CAS  PubMed  Google Scholar 

  145. Mauss, S., Chaponnier, C., Just, I., Aktories, K. & Gabbiani, G. ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Eur. J. Biochem. 194, 237–241 (1990).

    Article  CAS  PubMed  Google Scholar 

  146. Han, S., Craig, J. A., Putnam, C. D., Carozzi, N. B. & Tainer, J. A. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nature Struct. Biol. 6, 932–936 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Tsuge, H. et al. Crystal structure and site-directed mutagenesis of enzymatic components from Clostridium perfringens iota-toxin. J. Mol. Biol. 325, 471–483 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Reuner, K. H., Presek, P., Boschek, C. B. & Aktories, K. Botulinum C2 toxin ADP-ribosylates actin and disorganizes the microfilament network in intact cells. Eur. J. Cell Biol. 43, 134–140 (1987).

    CAS  PubMed  Google Scholar 

  149. Ohishi, I. Response of mouse intestinal loop to botulinum C2 toxin: enterotoxic activity induced by cooperation of nonlinked protein components. Infect. Immun. 40, 691–695 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Ohishi, I. & Odagiri, Y. Histopathological effect of Botulinum C2 toxin on mouse intestines. Infect. Immun. 43, 54–58 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Considine, R. V. & Simpson, L. L. Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity. Toxicon. 29, 913–936 (1991).

    Article  CAS  PubMed  Google Scholar 

  152. Goncalves, C., Decre, D., Barbut, F., Burghoffer, B. & Petit, J. C. Prevalence and characterization of a binary toxin (actin-specific ADP-ribosyltransferase) from Clostridium difficile. J. Clin. Microbiol. 42, 1933–1939 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Roudier, C., Fierer, J. & Guiney, D. G. Characterization of translation termination mutations in the spv operon of the Salmonella virulence plasmid pSDL2. J. Bacteriol. 174, 6418–6423 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lesnick, M. L., Reiner, N. E., Fierer, J. & Guiney, D. G. The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol. Microbiol. 39, 1464–1470 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Tezcan-Merdol, D. et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol. Microbiol. 39, 606–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  156. Fullner, K. J., Lencer, W. I. & Mekalanos, J. J. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect. Immun. 69, 6310–6317 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fullner, K. J. & Mekalanos, J. J. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J. 19, 5315–5323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lommel, S. et al. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2, 850–857 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Frischknecht, F. & Way, M. Surfing pathogens and the lessons learned for actin polymerization. Trends Cell Biol. 11, 30–38 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Gouin, E. et al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Suzuki, T., Miki, H., Takenawa, T. & Sasakawa, C. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17, 2767–2776 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dacheux, D. et al. Pseudomonas aeruginosa cystic fibrosis isolates induce rapid, type III secretion-dependent, but ExoU-independent, oncosis of macrophages and polymorphonuclear neutrophils. Infect. Immun. 68, 2916–2924 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yahr, T. L., Vallis, A. J., Hancock, M. K., Barbieri, J. T. & Frank, D. W. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl Acad. Sci. USA 95, 13899–13904 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Iglewski, B. H., Liu, P. V. & Kabat, D. Mechanism of action of Pseudomonas aeruginosa exotoxin Aiadenosine diphosphate-ribosylation of mammalian elongation factor 2 in vitro and in vivo. Infect. Immun. 15, 138–144 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Maresso, A. W., Baldwin, M. R. & Barbieri, J. T. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS. J. Biol. Chem. 279, 38402–38408 (2004).

    Article  CAS  PubMed  Google Scholar 

  166. Louvet-Vallee, S. ERM proteins: from cellular architecture to cell signaling. Biol. Cell 92, 305–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, S., Yahr, T. L., Frank, D. W. & Barbieri, J. T. Biochemical relationships between the 53-kilodalton (Exo53) and 49-kilodalton (ExoS) forms of exoenzyme S of Pseudomonas aeruginosa. J. Bacteriol. 179, 1609–1613 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sun, J. & Barbieri, J. T. Pseudomonas aeruginosa ExoT ADP-ribosylates CT10-regulator of kinase (Crk). J. Biol. Chem. 278, 32794–32803 (2003).

    Article  CAS  PubMed  Google Scholar 

  169. Sun, J., Maresso, A. W., Kim, J. J. & Barbieri, J. T. How bacterial ADP-ribosylating toxins recognize substrates. Nat. Struct. Mol. Biol. 11, 868–876 (2004). Provided structural predictions of how the bacterial ADP-ribosyltransferases recognize their substrates.

    Article  CAS  PubMed  Google Scholar 

  170. Feller, S. M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348–6371 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Hardt, W. -D., Chen, L. -M., Schuebel, K. E., Bustelo, X. R. & Galán, J. E. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93, 815–826 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Stender, S. et al. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36, 1206–1221 (2000).

    Article  CAS  PubMed  Google Scholar 

  173. Hayward, R. D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18, 4926–4934 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. McGhie, E. J., Hayward, R. D. & Koronakis, V. Cooperation between actin-binding proteins of invasive Salmonella: SipA potentiates SipC nucleation and bundling of actin. EMBO J. 20, 2131–2139 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. McGhie, E. J., Hayward, R. D. & Koronakis, V. Control of actin turnover by a Salmonella invasion protein. Mol. Cell 13, 497–510 (2004).

    Article  CAS  PubMed  Google Scholar 

  176. Kubori, T. & Galan, J. E. Temporal regulation of Salmonella virulence effector function by proteasome-dependent protein degradation. Cell 115, 333–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  177. Hernandez, L. D., Hueffer, K., Wenk, M. R. & Galan, J. E. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304, 1805–1807 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Hurd, T. W., Gao, L., Roh, M. H., Macara, I. G. & Margolis, B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature Cell Biol. 5, 137–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  179. Hirase, T. et al. Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J. Biol. Chem. 276, 10423–10431 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Genth, H. et al. Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii. Biochem. Biophys. Res. Commun. 229, 370–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  181. Chaves-Olarte, E. et al. A novel cytotoxin from Clostridium difficile serogroup F is a functional hybrid between two other large clostridial cytotoxins. J. Biol. Chem. 274, 11046–11052 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Popoff, M. R. et al. Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J. Biol. Chem. 271, 10217–10224 (1996).

    Article  CAS  PubMed  Google Scholar 

  183. Selzer, J. et al. Clostridium novyi α-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J. Biol. Chem. 271, 25173–25177 (1996).

    Article  CAS  PubMed  Google Scholar 

  184. Aktories, K., Wilde, C. & Vogelsgesang, M. Rho-modifying C3-like ADP-ribosyltransferases. Rev. Physiol. Biochem. Pharmacol. (2004).

  185. Krall, R., Sun, J., Pederson, K. J. & Barbieri, J. T. In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect. Immun. 70, 360–367 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Welch, M. D., Rosenblatt, J., Skoble, J., Portnoy, D. A. & Mitchison, T. J. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281, 105–108 (1998).

    Article  CAS  PubMed  Google Scholar 

  187. Ho, H. -Y. H. et al. Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118, 203–216 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.T.B. is supported by grants from National Institutes of Health. K.A. is supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Aktories.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

Bacillus cereus

Clostridium difficile

Escherichia coli K-12

Yersinia enterocolitica

Yersinia pseudotuberculosis

SwissProt

C. botulinum exoenzyme C3

Cdc42

CDT

C. difficile toxin A

C. difficile toxin B

Clostridium perfringens iota toxin

CNF1

CNF2

component C2I

component C2II

ExoS

ExoT

Rac1

RhoA

SptP

SpvB

YopT

Glossary

FOCAL CONTACTS

Regions of cell attachment to the extracellular matrix. Adhesion receptors and specific cytoskeletal proteins are clustered in these regions.

LAMELLIPODIA

Broad, flat protrusions at the leading edge of a moving cell that are enriched with a branched network of actin filaments. They are often associated with cell migration.

FOCAL COMPLEXES

Small dot-like adhesion structures that are present mainly at the edges of the lamellipodia.

FILOPODIA

Thin, transient actin protrusions that extend out from the cell surface and are formed by the elongation of bundled actin filaments.

TIGHT JUNCTIONS

Regions of apical adhesion between adjacent epithelial or endothelial cells. Tight junctions regulate paracellular flux, and contribute to the maintenance of cell polarity by stopping molecules from diffusing in the plane of the membrane.

ADHERENS JUNCTIONS

Epithelial cell–cell adhesion complexes associated with actin filaments that contain cadherins.

MAST CELL

A type of leukocyte with large secretory granules containing histamine and various protein mediators.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aktories, K., Barbieri, J. Bacterial cytotoxins: targeting eukaryotic switches. Nat Rev Microbiol 3, 397–410 (2005). https://doi.org/10.1038/nrmicro1150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro1150

  • Springer Nature Limited

This article is cited by

Navigation