Skip to main content
Log in

20 years of Ins(1,4,5)P3, and 40 years before

  • Timeline
  • Published:

From Nature Reviews Molecular Cell Biology

View current issue Sign up to alerts

Abstract

This year marks the 20th birthday of the discovery of inositol-1,4,5-trisphosphate as a second messenger. The background to this discovery is a complex story that goes back more than 50 years and involves a large cast of characters, both chemical and human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1: Four major contributors to the foundations of the Ins(1,4,5)P3 story in the 1950s and 1960s.
Figure 2: PI-PLC hydrolysis of inositol lipids.

References

  1. Streb, H., Irvine, R. F., Berridge, M. J. & Schulz, I. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306, 67–69 (1983).

    Article  CAS  Google Scholar 

  2. Michell, R. H. in Phosphoinositides and Receptor Mechanisms (ed. Putney, J. W. J.) 1–24 (Alan R. Liss, New York, 1986).

    Google Scholar 

  3. Hokin, L. E. The road to the phosphoinositide-generated second messengers. Trends Pharmacol. Sci. 8, 53–56 (1987).

    Article  CAS  Google Scholar 

  4. Berridge, M. J. in Advances in Second Messenger and Phosphoprotein Research Vol. 26 (ed. Putney, J. W. J.) 1–7 (Raven, New York, 1992).

    Google Scholar 

  5. Hokin, M. R. & Hokin, L. E. Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. Biol. Chem. 203, 967–977 (1953).

    CAS  PubMed  Google Scholar 

  6. Dawson, R. M. C. The measurement of 32P labelling of individual kephalins and lecithin in a small sample of tissue. Biochim. Biophys. Acta 14, 374–375 (1954).

    Article  CAS  Google Scholar 

  7. Hokin, L. E. & Hokin, M. R. Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. Biophys. Acta 18, 102–110 (1955).

    Article  CAS  Google Scholar 

  8. Hokin, L. E. & Hokin, M. R. The chemistry of cell membranes. Sci. Am. 213, 78–86 (1965).

    Article  CAS  Google Scholar 

  9. Durell, J. & Garland, J. T. Acetylcholine-stimulated phosphodiesteratic cleavage of phosphoinositides: hypothetical role in membrane depolarization. Ann. NY Acad. Sci. 165, 743–754 (1969).

    CAS  PubMed  Google Scholar 

  10. Michell, R. H. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta. 415, 81–147 (1975).

    Article  CAS  Google Scholar 

  11. Berridge, M. J. & Fain, J. N. Inhibition of phosphatidylinositol synthesis and the inactivation of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hydroxytryptamine. Biochem. J. 178, 59–69 (1979).

    Article  CAS  Google Scholar 

  12. Takai, Y., Kishimoto, A., Kikkawa, U., Mori, T. & Nishizuka, Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem. Biophys. Res. Commun. 91, 1218–1224 (1979).

    Article  CAS  Google Scholar 

  13. Berridge, M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220, 345–360 (1984).

    Article  CAS  Google Scholar 

  14. Folch, J. Brain diphosphoinositide, a new phosphoinositide having inositol metadiphosphate as a constituent. J. Biol. Chem. 177, 505–519 (1949).

    CAS  PubMed  Google Scholar 

  15. Dittmer, J. & Dawson, R. M. C. The isolation of a new complex lipid: triphosphoinositide from ox brain. Biochim. Biophys. Acta 40, 379–380 (1960).

    Article  CAS  Google Scholar 

  16. Dawson, R. M. C. & Dittmer, J. Evidence for the structure of brain triphosphoinositide from hydrolytic degradation studies. Biochem. J. 81, 540–545 (1961).

    Article  CAS  Google Scholar 

  17. Grado, C. & Ballou, C. E. Myo-inositol phosphates obtained from alkaline hydrolysis of beef brain phosphoinositide. J. Biol. Chem. 236, 54–60 (1961).

    CAS  PubMed  Google Scholar 

  18. Tomlinson, R. V. & Ballou, C. E. Complete characterisation of the myo-inositol polyphosphates from beef brain phosphoinositide. J. Biol. Chem. 236, 1902–1906 (1961).

    CAS  PubMed  Google Scholar 

  19. Brown, D. M. & Stewart, J. C. The structure of triphosphoinositide from beef brain. Biochim. Biophys. Acta 125, 413–421 (1966).

    Article  CAS  Google Scholar 

  20. Abdel Latif, A. A., Akhtar, R. A. & Hawthorne, J. N. Acetylcholine increases the breakdown of triphosphoinositide of rabbit iris muscle prelabelled with 32P phosphate. Biochem. J. 162, 61–73 (1977).

    Article  CAS  Google Scholar 

  21. Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P. & Creba, J. A. The stimulation of inositol lipid metabolism that accompanies calcium mobilization in stimulated cells: defined characteristics and unanswered questions. Philos. Trans. Roy. Soc. Lond. B 296, 123–138 (1981).

    Article  CAS  Google Scholar 

  22. Berridge, M. J., Dawson, R. M., Downes, C. P., Heslop, J. P. & Irvine, R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem. J. 212, 473–482 (1983).

    Article  CAS  Google Scholar 

  23. Berridge, M. J. Rapid accumulation of inositol trisphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol. Biochem. J. 212, 849–858 (1983).

    Article  CAS  Google Scholar 

  24. Berridge, M. J. & Irvine, R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321 (1984).

    Article  CAS  Google Scholar 

  25. Irvine, R. F. & Schell, M. J. Back in the water: the return of the inositol phosphates. Nature Rev. Mol. Cell Biol. 2, 327–338 (2001).

    Article  CAS  Google Scholar 

  26. Carafoli, E. Calcium signaling: a tale for all seasons. Proc. Natl Acad. Sci. USA 99, 1115–1122 (2002).

    Article  CAS  Google Scholar 

  27. Nielsen, S. P. & Petersen, O. H. Transport of calcium in the perfused submandibular gland of the cat. J. Physiol. 223, 685–697 (1972).

    Article  CAS  Google Scholar 

  28. Case, R. M. & Clausen, T. The relationship between calcium exchange and enzyme secretion in the isolated rat pancreas. J. Physiol. 235, 75–102 (1973).

    Article  CAS  Google Scholar 

  29. Stölze, H. & Schültz, I. Effect of atropine, ouabain, antimycin A and A23187 on 'trigger Ca2+ pool' in exocrine pancreas. Am. J. Physiol. 238, G338–G348 (1980).

    PubMed  Google Scholar 

  30. Denton, R. M. & McCormack, J. G. On the role of calcium transport cycle in heart and other mammalian mitochondria. FEBS Lett. 119, 1–8 (1980).

    Article  CAS  Google Scholar 

  31. Mignen, O., Thompson, J. L. & Shuttleworth, T. J. Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J. Biol. Chem. 276, 35676–35683. (2001).

    Article  CAS  Google Scholar 

  32. Vazquez, G., Wedel, B. J., Bird, G. S., Joseph, S. K. & Putney, J. W. An inositol 1,4,5-trisphosphate receptor-dependent cation entry pathway in DT40 B lymphocytes. EMBO J. 21, 4531–4538. (2002).

    Article  CAS  Google Scholar 

  33. Putney, J. W. Jr. A model for receptor-regulated calcium entry. Cell Calcium 7, 1–12 (1986).

    Article  CAS  Google Scholar 

  34. Putney, J. W. Jr, Broad, L. M., Braun, F. J., Lievremont, J. P. & Bird, G. S. Mechanisms of capacitative calcium entry. J. Cell Sci. 114, 2223–2229 (2001).

    CAS  PubMed  Google Scholar 

  35. Jöbsis, F. F. & O'Connor, M. J. Calcium release and reabsorption in the sartorius muscle of the toad. Biochem. Biophys. Res. Commun. 25, 246–252 (1966).

    Article  Google Scholar 

  36. Ridgway, E. B. & Ashley, C. C. Calcium transients in single muscle fibers. Biochem. Biophys. Res. Commun. 29, 229–234 (1967).

    Article  CAS  Google Scholar 

  37. Brown, J. E. et al. Rapid changes in intracellular free calcium concentration. Detection by metallochromic indicator dyes in squid giant axon. Biophys. J. 15, 1155–1160 (1975).

    Article  CAS  Google Scholar 

  38. Tsien, R. Y., Pozzan, T. & Rink, T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295, 68–71 (1982).

    Article  CAS  Google Scholar 

  39. Williams, D. A., Fogarty, K. E., Tsien, R. Y. & Fay, F. S. Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318, 558–561 (1985).

    Article  CAS  Google Scholar 

  40. Ross, C. A. et al. Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar purkinje neurons. Nature 339, 468–470 (1989).

    Article  CAS  Google Scholar 

  41. Furuichi, T. et al. Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342, 32–38 (1989).

    Article  CAS  Google Scholar 

  42. Mignery, G. A., Sudhof, T. C., Takei, K. & De Camilli, P. Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342, 192–195 (1989).

    Article  CAS  Google Scholar 

  43. Cockroft, S. (ed.). Biology of Phosphoinositides (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  44. Irvine, R. F., Letcher, A. J., Lander, D. J. & Downes, C. P. Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237–243 (1984).

    Article  CAS  Google Scholar 

  45. Batty, I. R., Nahorski, S. R. & Irvine, R. F. Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cortical slices. Biochem. J. 232, 211–215 (1985).

    Article  CAS  Google Scholar 

  46. Sugimoto, Y., Whitman, M., Cantley, L. C. & Erikson, R. L. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc. Natl Acad. Sci. USA 81, 2117–2121 (1984).

    Article  CAS  Google Scholar 

  47. Whitman, M., Downes, C. P., Keeler, M., Keller, T. & Cantley, L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332, 644–646 (1988).

    Article  CAS  Google Scholar 

  48. Irvine, R. F. Nuclear lipid signalling. Nature Rev. Mol. Cell Biol. 4, 349–360 (2003).

    Article  CAS  Google Scholar 

  49. Smith, C. D. & Wells, W. W. Phosphorylation of rat liver envelopes, characterisation of in vitro phosphorylation. J. Biol. Chem. 258, 9368–9373 (1983).

    CAS  PubMed  Google Scholar 

  50. Lassing, I. & Lindberg, U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314, 472–474 (1985).

    Article  CAS  Google Scholar 

  51. Hokin, M. R. & Hokin, L. E. in Metabolism and Physiological Significance of Lipids (eds, Dawson, R. M. C. & Rhodes, D. N.) 423–434 (John Wiley, London, 1964).

    Google Scholar 

  52. Cockcroft, S. Ca2+-dependent conversion of phosphatidylinositol to phosphatidate in neutrophils stimulated with fMet-Leu-Phe or ionophore A23187. Biochim. Biophys. Acta 795, 37–46 (1984).

    Article  CAS  Google Scholar 

  53. Berridge, M. J., Downes, C. P. & Hanley, M. R. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206, 587–595 (1982).

    Article  CAS  Google Scholar 

  54. Hallcher, L. M. & Sherman, W. R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 255, 10896–10901 (1980).

    CAS  PubMed  Google Scholar 

  55. Thompson, W. & Dawson, R. M. C. The triphosphoinositide phosphodiesterase of brain tissue. Biochem. J. 91, 237–243 (1964).

    Article  CAS  Google Scholar 

  56. Dawson, R. M. C. & Thompson, W. The triphosphoinositide phosphomonoesterase of brain tissue. Biochem. J. 91, 244–250 (1964).

    Article  CAS  Google Scholar 

  57. Low, M. G. & Weglicki, W. B. Resolution of myocardial phospholipase C into several forms with distinct properties. Biochem. J. 215, 325–334 (1983).

    Article  CAS  Google Scholar 

  58. Irvine, R. F., Letcher, A. J. & Dawson, R. M. Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms. Biochem. J. 218, 177–185 (1984).

    Article  CAS  Google Scholar 

  59. Wilson, D. B., Bross, T. E., Hofmann, S. L. & Majerus, P. W. Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes. J. Biol. Chem. 259, 11718–11724 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some of the details in this article have come from past conversations with M. Hokin, P. Kemp, R. Dawson, Y. Nishizuka and N. Freinkel. The photographs in Figure 1 were kindly supplied by L. Hokin, M. Hokin and S. Hokin, by R. Dawson and by M. Lees. I am grateful to many colleagues for their helpful comments on early drafts, though mine is the final responsibility for what is a personal perspective. I thank the Royal Society for its support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

diacylglycerol kinase

SwissProt

Src

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvine, R. 20 years of Ins(1,4,5)P3, and 40 years before. Nat Rev Mol Cell Biol 4, 586–590 (2003). https://doi.org/10.1038/nrm1152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1152

  • Springer Nature Limited

This article is cited by

Navigation